Skip to main content
Log in

Spatial Distribution of the Eddy Diffusion Coefficient in the Plasma Sheet of Earth’s Magnetotail and Its Dependence on the Interplanetary Magnetic Field and Geomagnetic Activity Based on MMS Satellite Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The article presents the results of a statistical analysis of the distribution of the eddy diffusion coefficient depending on the coordinates in the plasma sheet of Earth’s magnetosphere based on data from the Magnetospheric Multiscale Mission satellite system (MMS) for the period from 2017 to 2022. The localization of satellites inside the plasma sheet was recorded from the concentration and temperature of plasma ions according to the data of the same instruments and the value of plasma parameter β. Significant anisotropy of the eddy diffusion coefficient was revealed. The dependence of the eddy diffusion coefficient on the interplanetary magnetic field is analyzed, showing that with the southern orientation of the interplanetary magnetic field, the eddy diffusion coefficients are 1.5–2 times greater than with the northern orientation. It is also shown that under disturbed geomagnetic conditions (SML < –200 nT), the eddy diffusion coefficients are several times greater than under quiet geomagnetic conditions (SML > –50 nT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Angelopoulos, V., Kennel, C.F., Coroniti, F.V., Pellat, R., Spence, H.E., Kivelson, M.G., Walker, R.J., Baumjohann, W., Feldman, W.C., and Gosling, J.T., Characteristics of ion flow in the quiet state of the inner plasma sheet, Geophys. Res. Lett., 1993, vol. 20, no. 16, pp. 1711–1714. https://doi.org/10.1029/93GL00847

    Article  Google Scholar 

  2. Angelopoulos, V., Mukai, T., and Kokubun, S., Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality, Phys. Plasmas, 1999, vol. 6, no. 11, pp. 4161–4168. https://doi.org/10.1063/1.873681

    Article  CAS  Google Scholar 

  3. Antonova, E.E., On nonadiabatic diffusion and adjustment of concentration and temperature in the plasma sheet of the Earth’s magnetosphere, Geomagn. Aeron., 1985, vol. 25, no. 4, pp. 623–627.

    CAS  Google Scholar 

  4. Antonova, E.E. and Ovchinnikov, I.L., Equilibrium of a turbulent current sheet and the current sheet of geomagnetic tail, Geomagn. Aeron. (Engl. Transl.), 1996, vol. 36, no. 5, pp. 597–601.

  5. Antonova, E.E. and Ovchinnikov, I.L., Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence: structure and implications for substorm dynamics, J. Geophys. Res., 1999, vol. 104, pp. 17 289–17 297. https://doi.org/10.1029/1999JA900141

    Article  Google Scholar 

  6. Antonova, E.E. and Stepanova, M.V., The impact of turbulence on physics of the geomagnetic tail, Front. Astron. Space Sci., 2021, vol. 8, p. 622570. https://doi.org/10.3389/fspas.2021.622570

    Article  Google Scholar 

  7. Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantseva, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the Earth at geocentric distances ~7–10 R E, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, pp. 85–91. https://doi.org/10.1016/j.jastp.2012.08.013

    Article  Google Scholar 

  8. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 3, pp. 278–281. https://doi.org/10.1134/S0016793214030025

  9. Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth’s plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014b, vol. 115, pp. 32–40. https://doi.org/10.1016/j.jstp.2013.12.005

    Article  Google Scholar 

  10. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth Planets Space, 2015, vol. 67, no. 1, p. 166. https://doi.org/10.1186/s40623-015-0336-6

    Article  CAS  Google Scholar 

  11. Borovsky, J.E. and Funsten, H.E., MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation and driving, J. Geophys. Res., 2003, vol. 107, no. A7. https://doi.org/10.1029/2002JA009625

  12. Borovsky, J.E., Elphic, R.C., Funsten, H.O., and Thomsen, M.F., The Earth’s plasma sheet as a laboratory for turbulence in high-β MHD, J. Plasma Phys., 1997, vol. 57, no. 1, pp. 1–34. https://doi.org/10.1017/S0022377896005259

    Article  CAS  Google Scholar 

  13. Borovsky, J.E., Thomsen, M.F., and Elphic, R.C., The driving of the plasma sheet by the solar wind, J. Geophys. Res., 1998, vol. 103, no. A8, pp. 17 617–17 639. https://doi.org/10.1029/97JA02986

  14. Burch, J.L., Moore, T.E., Torbert, R.B., and Giles, B.L., Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 2016, vol. 199, pp. 5–21. https://doi.org/10.1007/s11214-015-0164-9

    Article  Google Scholar 

  15. Ergun, R.E., Goodrich, K.A., Wilder, F.D., et al., Magnetic reconnection, turbulence, and particle acceleration: Observations in the Earth’s magnetotail, Geophys. Res. Lett., 2018, vol. 45, pp. 3338–3347. https://doi.org/10.1002/2018GL076993

    Article  Google Scholar 

  16. Eyelade, A.V., Espinoza, C.M., Stepanova, M., Antonova, E.E., Ovchinnikov, I.L., and Kirpichev, I.P., Influence of MHD turbulence on ion kappa distributions in the Earth’s plasma sheet as a function of plasma β parameter, Front. Astron. Space Sci., 2021, vol. 8, p. 647121. https://doi.org/10.3389/fspas.2021.647121

    Article  Google Scholar 

  17. Montgomery, D., Remarks on the MHD problem of generic magnetospheres and magnetotails, in Magnetotail Physics, Lui, A.T.Y., Ed., Baltimore, Md.: John Hopkins Univ. Press, 1987.

    Google Scholar 

  18. Nagata, D., Machida, S., Ohtani, S., Saito, Y., and Mukai, T., Solar wind control of plasma number density in the near-Earth plasma sheet: Three-dimensional structure, Ann. Geophys., 2008, vol. 26, no. 12, pp. 4031–4049. https://doi.org/10.5194/angeo-26-4031-2008

    Article  CAS  Google Scholar 

  19. Ovchinnikov, I.L., Antonova, E.E., and Yermolaev, Yu.I., Determination of the turbulent diffusion coefficient in the plasma sheet using the project INTERBALL data, Cosmic Res., 2000, vol. 38, no. 6, pp. 557–561.

    Article  Google Scholar 

  20. Ovchinnikov, I.L., Antonova, E.E., and Yermolaev, Yu.I., Turbulence in the plasma sheet during substorms: A case study for three events observed by the INTERBALL Tail probe, Cosmic. Res., 2002a, vol. 40, no. 6, pp. 521–528.

    Article  Google Scholar 

  21. Ovchinnikov, I.L., Antonova, E.E., and Yermolaev, Yu.I., Plasma sheet heating during substorm and the values of the plasma sheet diffusion coefficient obtained on the base of Interball/Tail probe observations, Adv. Space Res., 2002b, vol. 30, no. 7, pp. 1821–1824. https://doi.org/10.1016/S0273-1177(02)00456-8

    Article  CAS  Google Scholar 

  22. Ovchinnikov, I.L., Antonova, E.E., and Naiko, D.Yu., Fluctuations of the electric and magnetic fields in the plasma sheet of the Earth’s magnetotail according to MMS data, Cosmic Res., 2024, vol. 62, no. 1, pp. 10–33. https://doi.org/10.1134/S0010952523700788

    Article  Google Scholar 

  23. Pinto, V., Stepanova, M., Antonova, E.E., and Valdivia, J.A., Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 7, pp. 1472–1477. https://doi.org/10.1016/j.jastp.2011.05.007

    Article  Google Scholar 

  24. Pollock, C., Moore, T., Jacques, A., et al., Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 2016, vol. 199, pp. 331–406. https://doi.org/10.1007/s11214-016-0245-4

    Article  Google Scholar 

  25. Stepanova, M. and Antonova, E.E., Modeling of the turbulent plasma sheet during quiet geomagnetic conditions, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 8, pp. 1636–1642. https://doi.org/10.1016/j.jastp.2011.02.009

    Article  Google Scholar 

  26. Stepanova, M.V., Vucina-Parga, T., Antonova, E.E., Ovchinnikov, I.L., and Yermolaev, Yu.I., Variation of the plasma turbulence in the central plasma sheet during substorm phases observed by the Interball/tail satellite, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, no. 11, pp. 1815–1820. https://doi.org/10.1016/j.jastp.2005.01.013

    Article  Google Scholar 

  27. Stepanova, M., Antonova, E.E., Paredes-Davis, D., Ovchinnikov, I.L., and Yermolaev, Y.I., Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms, Ann. Geophys., 2009, vol. 27, no. 4, pp. 1407–1411. https://doi.org/10.5194/angeo-27-1407-2009

    Article  Google Scholar 

  28. Stepanova, M., Pinto, V., Valdivia, J.A., and Antonova, E.E., Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data, J. Geophys. Res., 2011, vol. 116, no. 1. https://doi.org/10.1029/2010JA015887

  29. Torbert, R.B., Russell, C.T., Magnes, W., et al., The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products, Space Sci. Rev., 2016, vol. 199, pp. 105–135. https://doi.org/10.1007/s11214-014-0109-8

    Article  Google Scholar 

  30. Troshichev, O.A., Antonova, E.E., and Kamide, Y., Inconsistence of magnetic field and plasma velocity variations in the distant plasma sheet: Violation of the “frozen-in” criterion?, Adv. Space Res., 2002, vol. 30, no. 12, pp. 2683–2687. https://doi.org/10.1016/S0273-1177(02)80382-9

    Article  Google Scholar 

  31. Vörös, W., Baumjohann, W., Nakamura, R., Runov, A., et al., Multi-scale magnetic field intermittence in the plasma sheet, Ann. Geophys., 2003, vol. 21, no. 9, pp. 1955–1964. https://doi.org/10.5194/angeo-21-1955-2003

    Article  Google Scholar 

  32. Wang, C.-P., Lyons, L.R., Nagai, T., Weygand, J.M., and Lui, A.T.Y., Evolution of plasma sheet particle content under different interplanetary magnetic field conditions, J. Geophys. Res., 2010, vol. 115, no. 6. https://doi.org/10.1029/2009JA015028

  33. Weygand, J.M., Kivelson, M.G., Khurana, K.K., Schwarzl, H.K., et al., Plasma sheet turbulence observed by Cluster II, J. Geophys. Res., 2005, vol. 110, no. 2. https://doi.org/10.1029/2004JA010581

  34. Yermolaev, Yu.I., Petrukovich, A.A., Zelenyi, L.M., Antonova, E.E., Ovchinnikov, I.L., and Sergeev, V.A., Investigation of the structure and dynamics of the plasma sheet: The CORALL experiment of the INTERBALL project, Cosmic Res., 2000, vol. 38, no. 1, pp. 13–19.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the MMS project team for the opportunity to use the data, as well as to the creators of the OMNI database (https://omniweb.gsfc.nasa.gov/) and the SuperMAG project (https://supermag.jhuapl.edu/info/).

Funding

The study was supported by the Russian Science Foundation, grant no. 23-22-00076 (https://rscf.ru/project/23-22-00076/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Naiko, I. L. Ovchinnikov or E. E. Antonova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naiko, D.Y., Ovchinnikov, I.L. & Antonova, E.E. Spatial Distribution of the Eddy Diffusion Coefficient in the Plasma Sheet of Earth’s Magnetotail and Its Dependence on the Interplanetary Magnetic Field and Geomagnetic Activity Based on MMS Satellite Data. Geomagn. Aeron. 64, 172–179 (2024). https://doi.org/10.1134/S0016793223600996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600996

Navigation