Skip to main content
Log in

Depth to the Bottom of Lithospheric Magnetic Sources Beneath Northeastern Eurasia: Lithospheric Thermal Regime and Relation to Seismicity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

For northeastern Eurasia (60°–70° N, 90°–180° E), the bottom depth of the lithospheric magnetoactive layer is estimated using the centroid method based on two-dimensional spectral analysis of the lithospheric magnetic field. The lithospheric magnetic field within the study region is described by the EMAG2v3 global model. The results show that maximum values (>50 km) of the depth to the bottom of lithospheric magnetic sources are observed almost everywhere under the Siberian Platform north of 65° N. Minimum depth values (<30 km) are traced under the Koryak–Kamchatka fold belt and the Okhotsk–Chukotka volcanic belt. Under the Verkhoyansk–Kolyma fold belt, different maxima (up to 44 km) and minima (up to 30 km) of the bottom depth are seen. Assuming that magnetite is a main magnetic mineral in the continental lithosphere, our distribution of the bottom depth indicates eastward lithospheric heating, from the Siberian Platform to the Koryak–Kamchatka fold belt. The revealed tendency is confirmed by independent geophysical data. Comparison of the results with the distribution of epicenters of regional earthquakes (M ≥ 4.0, 1962–2020) shows that most sources of strong earthquakes (M ≥ 6.0) recorded during the instrumental period of observation, are confined to zones in which a sharp change in depth to the bottom of lithospheric magnetic sources occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

DATA AVAILABILITY

The resulting depth distribution of the bottom boundary of lithospheric magnetic sources is available upon request at aleirk@mail.ru.

REFERENCES

  1. Aleshina, E.I., Kurtkin, S.V., and Karpenko, L.I., Seismicity of northeastern Russia in 2016–2017, in Zemletryaseniya Severnoi Evrazii (Earthquakes in Northern Eurasia), vol. 25: (2016–2017), 2022, pp. 176–186. https://doi.org/10.35540/1818-6254.2022.25.15

  2. Artemieva, I.M., Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  ADS  Google Scholar 

  3. Bird, P., An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 2003, vol. 4, no. 3, 1027. https://doi.org/10.1029/2001GC000252

    Article  ADS  Google Scholar 

  4. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, pp. 56–72. https://doi.org/10.1093/gji/ggx144

    Article  ADS  CAS  Google Scholar 

  5. Carillo-de la Cruz, J.L., Prol-Ledesma, R.M., and Gabriel, G., Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico, Geothermics, 2021, vol. 97, 102225. https://doi.org/10.1016/j.geothermics.2021.102225

    Article  Google Scholar 

  6. Chebrov, V.N., Olyutorskoe zemletryasenie (20 (21) aprelya 2006 g., Koryakskoe nagor’e). Pervye rezul’taty issledovanii (The Olyutor Earthquake (April 20 (21), 2006, Koryak Highlands): First Results), Petropavlovsk-Kamchatskii: GS RAN, 2007.

  7. Chebrov, D.V., Saltykov, V.A., Droznina, S.Ya., Romasheva, E.I., Mityushkina, S.V., Abubakirov, I.R., Pavlov, V.M., Raevskaya, A.A., and Matveenko, E.A., Seismicity of Kamchatka and Komandor Islands in 2016–2017, in Zemletryaseniya Severnoi Evrazii (Earthquakes in Northern Eurasia), vol. 25: (2016–2017), 2022, pp. 164–175. https://doi.org/10.35540/1818-6254.2022.25.14

  8. Cherepanova, Y., Artemieva, I.M., Thybo, H., and Chemi-a, Z., Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing data, Tectonophysics, 2013, vol. 609, pp. 154–183. https://doi.org/10.1016/j.tecto.2013.05.004

    Article  ADS  Google Scholar 

  9. Correa, R.T., Vidotti, R.M., Guedes, V.J.C.B., and Scandolara, J.E., Mapping the thermal structure of the Amazon craton to constrain the tectonic domains, J. Geophys. Res.: Solid Earth, 2022, vol. 127, no. 1, e2021JB023025. https://doi.org/10.1029/2021JB023025

  10. Drachev, S.S., Malyshev, N.A., and Nikishin, A.M., Tectonic history and petroleum geology of the Russian Arctic shelves: An overview, in Petroleum Geology: From Mature Basins to New Frontiers: Proc. 7th Petroleum Geology Conference, London: Geological Society, 2010, pp. 591–619. https://doi.org/10.1144/0070591

  11. Filippova, A.I. and Filippov, S.V., Depths to lithospheric magnetic sources and lithospheric thermal regime under the East Siberian Sea, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 507–519. https://doi.org/10.1134/S1069351322040036

    Article  Google Scholar 

  12. Filippova, A.I. and Filippov, S.V., Thermal regime of the lithosphere under the Taimyr Peninsula according to geomagnetic data, Geomagn. Aeron. (Engl. Transl.), 2023a, vol. 63, no. 3, pp. 349–359. https://doi.org/10.1134/S0016793223600054

  13. Filippova, A.I. and Filippov, S.V., The depths to lithospheric magnetic sources under the Baltic Shield, Geomagn. Aeron. (Engl. Transl.), 2023b, vol. 63, no. 5, pp. 629–641. https://doi.org/10.1134/S0016793223600431

  14. Filippova, A.I. and Melnikova, V.I., Crustal stresses in the east arctic region from new data on earthquake focal mechanisms, Tectonics, 2023, vol. 42, e2022TC007338. https://doi.org/10.1029/2022TC007338

  15. Filippova, A.I., Golubev, V.A., and Filippov, S.V., Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  ADS  Google Scholar 

  16. Fuchs, S., Norden, B., Artemieva, I., et al., The Global Heat Flow Database: Release, 2021, GFZ Data Services, 2021a. https://doi.org/10.5880/fidgeo.2021.014

  17. Fuchs, S., Beardsmore, G., Chiozzi, P., et al., A new database structure for the IHFC global heat flow database, Int. J. Terr. Heat Flow Appl. Geothermics, 2021b, vol. 4, no. 1, pp. 1–14. https://doi.org/10.31214/ijthfa.v4i1.62

    Article  Google Scholar 

  18. Fujita, K., Kozmin, B.M., Mackey, K.G., Riegel, S.A., Imaev, V.S., and McLean, M.S., Seismotectonics of the Chersky seismic belt, eastern Russia (Yakutia) and Magadan district, Russia, in Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov, Stephan Mueller Spec. Publ., 2009, vol. 4, pp. 117–145. https://doi.org/10.5194/smsps-4-117-2009

  19. Gard, M. and Hasterok, D., A global curie depth model utilizing the equivalent source magnetic dipole method, Phys. Earth Planet. Inter., 2021, vol. 313, 106672. https://doi.org/10.1016/j.pepi.2021.106672

    Article  Google Scholar 

  20. Gaudreau, É., Audet, P., and Schneider, D.A., Mapping curie depth across western Canada from a wavelet analysis of magnetic anomaly data, J. Geophys. Res.: Solid Earth, 2019, vol. 124, pp. 4365–4385. https://doi.org/10.1029/2018JB016726

    Article  ADS  Google Scholar 

  21. Gvishiani, A.D., Vorobieva, I.A., Shebalin, P.N., Dzeboev, B.A., Dzeranov, B.V., and Skorkina, A.A., Integrated earthquake catalog of the eastern sector of the Russian Arctic, Appl. Sci., 2022, vol. 12, no. 10, 5010. https://doi.org/10.3390/app12105010

    Article  CAS  Google Scholar 

  22. Idarraga-Garcia, J. and Vargas, C.A., Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior, Geod. Geodyn., 2018, vol. 9, pp. 93–107. https://doi.org/10.1016/j.geog.2017.09.006

    Article  Google Scholar 

  23. Imaev, V.S., Imaeva, L.P., and Koz’min, B.M., Seismotektonika Yakutii (Seismotectonics of Yakutia), Moscow: GEOS, 2000.

  24. Imaeva, L.P., Koz’min, B.M., Imaev, V.S., and Mackey, K.G., Structural dynamic analysis of the epicentral zone of the Ilin-Tas earthquake (Feb 14, 2013, M s = 6.9), J. Seismol., 2015, vol. 19, pp. 341–353. https://doi.org/10.1007/s10950-014-9469-5

    Article  ADS  Google Scholar 

  25. Imaeva, L.P., Imaev, V.S., Koz’min, B.M., Mel’nikova, V.I., Seredkina, A.I., Mackey, K.D., Ashurkov, S.V., Smekalin, O.P., Ovsyuchenko, A.N., Chipizubov, A.V., and Syas’ko, A.A., Seismotektonika severo-vostochnogo sektora Rossiiskoi Arktiki (Seismotectonics of the Northeastern Sector of the Russian Arctic), Novosibirsk: SO RAN, 2017.

  26. Koz’min, B.M., Seismicheskie poyasa Yakutii i mekhanizmy ochagov ikh zemletryasenii (Seismic Belts of Yakutia and Focal Mechanisms of Their Earthquakes), Moscow: Nauka, 1984.

  27. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere, Cambridge, UK: Cambridge University Press, 1998.

    Book  Google Scholar 

  28. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST 1.0: A 1-degree global model of Earth’s crust, in Abstracts of the European Geoscience Union General Assembly, Vienna, 2013, EGU2013-2658.

  29. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: Inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, Geol. Soc. London, Spec. Publ., 2017, vol. 460, pp. 419–440. https://doi.org/10.1144/SP460.10

    Article  ADS  Google Scholar 

  30. Levshin, A.L., Ritzwoller, M.H., Barmin, M.P., Villasenor, A., and Padgett, C.A., New constraints on the arctic crust and uppermost mantle: Surface wave group velocities, Pn, and Sn, Phys. Earth Planet. Inter., 2001, vol. 123, pp. 185–204. https://doi.org/10.1016/S0031-9201(00)00209-0

    Article  ADS  Google Scholar 

  31. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, 45129. https://doi.org/10.1038/srep45129

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu, Y., Li, C.-F., Wang, J., and Wan, X., Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications, Tectonophysics, 2022, vol. 822, 229158. https://doi.org/10.1016/j.tecto.2021.229158

    Article  Google Scholar 

  33. Maule, C.F., Purucker, M.E., Olsen, N., and Mosegaard, K., Heat flux anomalies in Antarctica revealed by satellite magnetic data, Science, 2005, vol. 309, pp. 464–467. https://doi.org/10.1126/science.1106888

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Meyer, B., Chulliat, A., and Saltus, R., Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 4522–4537. https://doi.org/10.1002/2017GC007280

    Article  ADS  Google Scholar 

  35. NOAA National Centers for Environmental Information, 2022: ETOPO 2022 15 Arc-Second Global Relief Model. https://doi.org/10.25921/fd45-gt74 https://www.ncei.noaa.gov/products/etopo-global-relief-model. Accessed July 25, 2023.

  36. Nuñez Demarco, P., Prezzi, C., and Sánchez Bettucci, L., Review of Curie point depth determination through different spectral methods applied to magnetic data, Geophys. J. Int., 2021, vol. 224, no. 1, pp. 17–39. https://doi.org/10.1093/gji/ggaa361

    Article  ADS  CAS  Google Scholar 

  37. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22363–22371.

    Article  ADS  Google Scholar 

  38. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, pp. 481–494.

    Article  ADS  Google Scholar 

  39. Oliveira, J.T.C., Barbosa, J.A., de Castro, D.L., de Barros Correia, P., Magalhães, J.R.C., Filho, O.J.C., and Buarque, B.V., Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation, Ann. Geophys., 2021, vol. 64, no. 2, GT213. https://doi.org/10.4401/ag-8424

    Article  Google Scholar 

  40. Petrov, O., Morozov, A., Shokalsky, S., Kashubin, S., Artemieva, I.M., Sobolev, N., Petrov, E., Ernst, R.E., Sergeev, S., and Smelror, M., Crustal structure and tectonic model of the Arctic Region, Earth Sci. Rev., 2016, vol. 154, pp. 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013

    Article  ADS  Google Scholar 

  41. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program, 2015 https://wiki.oulu.fi/x/0oU7AQ/.

  42. Prasad K.N.D., Bansal A.R., Prakash Om, Singh A.P. Magneto-thermometric modeling of Central India: Implications for the thermal lithosphere, J. Appl. Geophys., 2022, vol. 196, 104508. https://doi.org/10.1016/j.jappgeo.2021.104508

    Article  Google Scholar 

  43. Priestley, K., McKenzie, D., and Ho, T., A lithosphere–asthenosphere boundary: A global model derived from multimode surface-wave tomography and petrology, in Lithospheric Discontinuities Yuan, H. and Romanowicz, B., Eds., AGU, 2019, ch. 6, pp. 111–123. https://doi.org/10.1002/9781119249740.ch6

  44. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  ADS  Google Scholar 

  45. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  ADS  Google Scholar 

  46. Seredkina, A.I., Surface wave tomography of the Arctic from Rayleigh and Love wave group velocity dispersion data, Izv., Phys. Solid Earth, 2019, vol. 55, no. 3, pp. 439–450. https://doi.org/10.1134/S106935131903008X

    Article  Google Scholar 

  47. Seredkina, A.I. and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 902–916. https://doi.org/10.15372/GiG2020162

    Article  Google Scholar 

  48. Shibaev, S.V., Geissler, W., Koz’min, B.M., Tuktarov, R.M., and Makarov, A.A., Seismicity of Yakutia in 2016–2017, in Zemletryaseniya Severnoi Evrazii (Earthquakes in Northern Eurasia), vol. 25: (2016–2017), 2022, pp. 187–195. https://doi.org/10.35540/1818-6254.2022.25.16

  49. Sibson, R.H., Roughness at the base of the seismogenic zone: contributing factors, J. Geophys. Res.: Solid Earth, 1984, vol. 89, no. B7, pp. 5791–5799. https://doi.org/10.1029/JB089iB07p05791

    Article  Google Scholar 

  50. Sobh, M., Gerhards, C., Fadel, I., and Götze, H.-J., Mapping the thermal structure of Southern Africa from Curie depth estimates based on wavelet analysis of magnetic data with uncertainties, Geochem. Geophys. Geosyst., 2021, vol. 22, no. 1, e2021GC010041. https://doi.org/10.1029/2021GC010041

  51. Tanaka, A. and Ishikawa, Y., Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study, Phys. Earth Planet. Inter., 2005, vol. 152, pp. 257–266. https://doi.org/10.1016/j.pepi.2005.04.011

    Article  ADS  Google Scholar 

  52. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  ADS  Google Scholar 

  53. Vazhenin, B.P., Printsipy, metody i rezul’taty paleoseismogeologicheskikh issledovanii na Severo-Vostoke Rossii (Principles, Methods, and Results of Paleoseismogeological Studies in Northeastern Russia), Magadan: SVKNII DVO RAN, 2000.

  54. Wen, L., Kang, G., Bai, C., and Gao, G., Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas, Earth Planets Space, 2019, vol. 71, 85. https://doi.org/10.1186/s40623-019-1063-1

    Article  ADS  Google Scholar 

  55. Yanovskii, B.M., Zemnoi magnetizm (Terrestrial Magnetism), Leningrad: Leningradskii universitet, 1978.

  56. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates in the Territory of the USSR), Moscow: Nedra, 1990a, vol. 1.

  57. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates in the Territory of the USSR), Moscow: Nedra, 1990b, vol. 2.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Filippova or S. V. Filippov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Filippov, S.V. Depth to the Bottom of Lithospheric Magnetic Sources Beneath Northeastern Eurasia: Lithospheric Thermal Regime and Relation to Seismicity. Geomagn. Aeron. 64, 128–137 (2024). https://doi.org/10.1134/S0016793223600790

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600790

Keywords:

Navigation