Skip to main content
Log in

Daytime VLF Emissions during the Magnetic Storm Recovery Phase: the Event of January 5, 2015

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This paper discusses the spectral and temporal features of the 7-h daytime VLF noise emission burst in the frequency band of 1‒10 kHz observed on the Earth’s surface during the late recovery phase of a moderate magnetic storm ( = 5 and Dst ~ –80 nT) under nearly quiet space weather. These VLF emissions were recorded simultaneously at two auroral stations located at a geomagnetic latitude of ~64° MLAT and at a longitude distance of ~400 km from each other: Finnish Kannuslehto Station (KAN) and Russian Lovozero Observatory (LOZ). The dynamic VLF wave spectrum is considered at different time scales. During the development of the discussed daytime VLF burst, the noise emissions at below 3.5 kHz gradually turn into periodic (QP) emissions with a quasi-repetition of ~3 s. Having compared the directions of short isolated high-frequency (above 5 kHz) VLF signals (so-called “birds”) arriving at KAN and LOZ, we draw conclusions on the possible location and spatial dynamics of the exit area of emission from the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bespalov, P.A., Self-modulation of plasma cyclotron maser radiation, Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 33, no. 4, pp. 192–195.

    Google Scholar 

  2. Bespalov, P.A. and Koval’, L.N., Formation of the cyclotron instability periodic regimes in plasma magnetic mirrors, Fiz. Plazmy, 1982, vol. 8, no. 6, pp. 1136–1144.

    Google Scholar 

  3. Bespalov, P.A. and Trakhtengerts, V.Yu., On nonlinear oscillation processes in the Earth’s magnetosphere, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1976, vol. 19, nos. 5–6, pp. 801–811.

    Google Scholar 

  4. Bespalov, P.A. and Trakhtengerts, V.Y., The cyclotron instability in the Earth radiation belts, Rev. Plasma Phys., 1986, vol. 10, pp. 155–192.

    Google Scholar 

  5. Bespalov, P.A., Parrot, M., and Manninen, J., Short-period VLF emissions as solitary envelope waves in a magnetospheric plasma maser, J. Atmos. Sol.-Terr. Phys., 2010, vol. 72, pp. 1275–1281. https://doi.org/10.1016/j.jastp.2010.09.001

    Article  Google Scholar 

  6. Bortnik, J., Thorne, R.M., and Meredith, N.P., Plasmaspheric hiss overview and relation to chorus, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1636–1646. https://doi.org/10.1016/j.jastp.2009.03.023

    Article  Google Scholar 

  7. Cornilleau-Wehrlin, N., Solomon, J., Korth, A., and Kremser, G., Generation mechanism of plasmaspheric ELF/VLF hiss: A statistical study from GEOS 1 data, J. Geophys. Res., 1993, vol. 98, pp. 21471–21480. https://doi.org/10.1029/93JA01919

    Article  Google Scholar 

  8. Davis, T.N. and Sugiura, M., Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 1966, vol. 71, pp. 785–801. https://doi.org/10.1029/JZ071i003p00785

    Article  Google Scholar 

  9. Delport, B., Collier, A.B., Lichtenberger, J., Rodger, C.J., Parrot, M., Clilverd, M.A., and Friedel, R.H.W., Simultaneous observation of chorus and hiss near the plasmapause, J. Geophys. Res., 2012, A12218. https://doi.org/10.1029/2012JA017609

  10. Dunckel, N. and Helliwell, R.A., Whistler mode emissions on the OGO 1 satellite, J. Geophys. Res., 1969, vol. 74, pp. 6371–6385. https://doi.org/10.1029/JA074i026p06371

    Article  Google Scholar 

  11. Engebretson, M.J., Posch, J.L., Halford, A.J., Shelburne, G.A., Smith, A.J., Spasojevic, M., Inan, U.S., and Arnoldy, R.L., Latitudinal and seasonal variations of quasiperiodic and periodic VLF emissions in the outer magnetosphere, J. Geophys. Res., 2004, vol. 109, A05216. https://doi.org/10.1029/2003JA010335

    Article  Google Scholar 

  12. Fedorenko, Y., Tereshchenko, E., Pilgaev, S., Grigoryev, V., and Blagoveshchenskaya, N., Polarization of ELF waves generated during “beating-wave” heating experiment near cutoff frequency of the Earth–ionosphere waveguide, Radio Sci., 2014, vol. 49, pp. 1254–1264. https://doi.org/10.1002/2013RS005336

    Article  Google Scholar 

  13. Fedyakina, N.I., Noise storms in VLF-emissions and the Dst variation, in Nizkochastotnye signaly vo vneshnei ionosfere (Low-Frequency Signals in the Outer Ionosphere), Yakutsk: Yakutskii filial SO AN SSSR, 1976, pp. 59–64.

  14. Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, A09213. https://doi.org/10.1029/2012JA017683

    Article  Google Scholar 

  15. Golden, D.I., Spasojevic, M., Li, W., and Nishimura, Y., Statistical modeling of plasmaspheric hiss amplitude using solar wind measurements and geomagnetic indices, Geophys. Res. Lett., 2012, vol. 39, L06103. https://doi.org/10.1029/2012GL051185

    Article  Google Scholar 

  16. Hayakawa, M. and Sazhin, S.S., Mid-latitude and plasmaspheric hiss: A review, Planet. Space Sci., 1992, vol. 40, no. 10, pp. 1325–1338.

    Article  Google Scholar 

  17. Helliwell, R.A., Whistler and Related Ionospheric Phenomena, Stanford: Stanford Univ. Press, 1965.

    Google Scholar 

  18. Kim, K.-C., Lee, D.-Y., and Shprits, Y., Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 1153–1167. https://doi.org/10.1002/2014JA020687

    Article  Google Scholar 

  19. Kleimenova, N.G., Troitskaya, V.A., and Vigneron, J., The relationship of midlatitude VLF emissions with geomagnetic activity, Geomagn. Aeron., 1968, vol. 8, no. 1, pp. 529–533.

    Google Scholar 

  20. LaBelle, J. and Treumann, R., Auroral radio emissions. 1. Hisses, roars, and bursts, Space Sci. Rev., 2002, vol. 101, no. 3, pp. 295–440.

    Article  Google Scholar 

  21. Manninen, J., Some aspects of ELF–VLF emissions in geophysical research, PhD Thesis, Sodankylä, Finland: Oulu University, 2005. http://www.sgo.fi/Publications/SGO/thesis/ManninenJyrki.pdf.

    Google Scholar 

  22. Manninen, J., Kleimenova, N.G., and Kozyreva, O.V., Daytime VLF emissions at the Sodankylä Observatory (L ~ 5.3) at the front of high-speed solar wind streams, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 3, pp. 298–306. https://doi.org/10.1134/S0016793213030109

  23. Manninen, J., Demekhov, A.G., Titova, E.E., Kozlovsky, A.E., and Pasmanik, D.L., Quasi-periodic VLF emissions with short-period modulation and their relationship to whistlers: A case study, J. Geophys. Res., 2014, vol. 119, no. 5, pp. 3544–3557. https://doi.org/10.1002/2013JA019743

    Article  Google Scholar 

  24. Manninen, J., Kleimenova, N.G., Kozlovsky, A., Kornilov, I.A., Gromova, L.I., Fedorenko, Yu.V., and Turunen, T., Strange VLF bursts in Northern Scandinavia: Case study of the afternoon “mushroom-like” hiss on 8 December 2013, Ann. Geophys., 2015, vol. 33, pp. 991–995. https://doi.org/10.5194/angeo-33-991-2015

    Article  Google Scholar 

  25. Manninen, J., Turunen, T., Kleimenova, N., Rycroft, M., Gromova, L., and Sirviö, I., Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland, Environ. Res. Lett., 2016, vol. 11, id 124006. https://doi.org/10.1088/1748-9326/11/12/124006

  26. Manninen, J., Turunen, T., Kleimenova, N.G., Gromova, L.I., and Kozlovskii, A.E., A new type of daytime high-frequency VLF emissions at auroral latitudes (“bird emissions”), Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 32–39. https://doi.org/10.1134/S0016793217010091

  27. Meredith, N.P., Horne, R.B., Clilverd, M.A., Horsfall, D., Thorne, R.M., and Anderson, R.R., Origins of plasmaspheric hiss, J. Geophys. Res., 2006, vol. 111, A09217. https://doi.org/10.1029/2006JA011707

    Article  Google Scholar 

  28. Němec, F., Santolík, O., Parrot, M., Pickett, J.S., Hayosh, M., and Cornilleau-Wehrlin, N., Conjugate observations of quasi-periodic emissions by Cluster and DEMETER spacecraft, J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 1, pp. 198–208. https://doi.org/10.1029/2012JA018380

    Article  Google Scholar 

  29. Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011, vol. 116, A12211. https://doi.org/10.1029/2011JA016779

    Article  Google Scholar 

  30. Nikitenko, A.S., Lebed’, O.M., and Fedorenko, Yu.V., The first results of localization of natural ELF/VLF emissions at high latitudes according to ground-based observation data, in Trudy 41-go seminara “Fizika avroral’nykh yavlenii” (Proceedings of the 41th Seminar “Physics of Auroral Phenomena”), Apatity, 2018, pp. 61–65. https://doi.org/10.25702/KSC.2588-0039.2018.41.61-65.

  31. Ohya, H., Shiokawa, K., and Miyoshi, Y., Daytime tweek atmospherics, J. Geophys. Res.: Space Phys., 2015, vol. 120, no. 1, pp. 654–665. https://doi.org/10.1002/2014JA020375

    Article  Google Scholar 

  32. Pilgaev, S.V., Larchenko, A.V., Filatov, M.V., Fedorenko, Yu.V., and Lebed, O.M., A function generator for calibration of electromagnetic-field recorders, Instrum. Exp. Tech., 2018, vol. 61, no. 6, pp. 809–814. https://doi.org/10.1134/S0020441218060106

    Article  Google Scholar 

  33. Raspopov, O.M. and Kleimenova, N.G., Vozmushcheniya elektromagnitnogo polya Zemli (Disturbances in the Earth’s Electromagnetic Field), vol. 3: ONCh izlucheniya (VLF Emissions), Leningrad: LGU, 1977.

  34. Rycroft, M.J., VLF emissions in the magnetosphere, Radio Sci., 1972, vol. 7, pp. 811–830. https://doi.org/10.1029/RS007i008p00811

    Article  Google Scholar 

  35. Rytov, S.M., Vvedenie v statisticheskuyu radiofiziku (Introduction to Statistical Radiophysics), vol. 1: Sluchainye protsessy (Random Processes), Moscow: Nauka, 1966.

  36. Santolík, O. and Chum, J., The origin of plasmaspheric hiss, Science, 2009, vol. 324, no. 5928, pp. 729–730. https://doi.org/10.1126/science.1172878

    Article  Google Scholar 

  37. Santolík, O., Parrot, M., Storey, L.R.O., Pickett, J.S., and Gurnett, D.A., Propagation analysis of plasmaspheric hiss using Polar PWI measurements, Geophys. Res. Lett., 2001, vol. 28, no. 6, pp. 1127–1130. https://doi.org/10.1029/2000GL012239

    Article  Google Scholar 

  38. Smith, E.J., Frandsen, A.M.A., Tsurutani, B.T., Thorne, R.M., and Chan, K.W., Plasmaspheric hiss intensity variations during magnetic storms, J. Geophys. Res.,1974, vol. 79, no. 16, pp. 2507–2510. https://doi.org/10.1029/JA079i016p02507

    Article  Google Scholar 

  39. Storey, L.R.O., Lefeuvre, F., Parrot, M., Cairó, L., and Anderson, R.R., Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1, J. Geophys. Res., 1991, no. A11, pp. 19469–19489. https://doi.org/10.1029/91JA01828

  40. Summers, D., Omura, Y., Nakamura, S., and Kletzing, C.A., Fine structure of plasmaspheric hiss, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 9134–9149. https://doi.org/10.1002/2014JA020437

    Article  Google Scholar 

  41. Tanskanen, E.I., A comprehensive high-throughput analysis of substorms observed by image magnetometer network: Years 1993–2003 examined, J. Geophys. Res., 2009, vol. 114, A05204. https://doi.org/10.1029/2008JA013682

    Article  Google Scholar 

  42. Thorne, R.M., Smith, E.J., Burton, R.K., and Holzer, R.E., Plasmaspheric hiss, J. Geophys. Res., 1973, vol. 78, pp. 1581–1596. https://doi.org/10.1029/JA078i010p01581

    Article  Google Scholar 

  43. Thorne, R.M., Church, S.R., and Gorney, D.J., On the origin of the plasmaspheric hiss: The importance of wave propagation and the plasmapause, J. Geophys. Res., 1979, vol. 84, pp. 5241–5247. https://doi.org/10.1029/JA084iA09p05241

    Article  Google Scholar 

  44. Titova, E.E., Kozelov, B.V., Demekhov, A.G., Manninen, J., Santolik, O., Kletzing, C.A., and Reeves, G., Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations, Geophys. Res. Lett., 2015, vol. 42, pp. 6137–6145. https://doi.org/10.1002/2015GL064911

    Article  Google Scholar 

  45. Trakhtengerts, V.Y. and Rycroft, M.J., Whistler and Alfvén Mode Cyclotron Masers in Space, Cambridge: Cambridge Univ. Press, 2008; Moscow: Fizmatlit, 2011.

  46. Trakhtengerts, V.Y., Rycroft, M.J., and Demekhov, A.G., Interrelation of noise-like and discrete ELF/VLF emissions generated by cyclotron interactions, J. Geophys. Res., 1996, vol. 101, no. A6, pp. 13293–13303. https://doi.org/10.1029/95JA03515

    Article  Google Scholar 

  47. Tsurutani, B.T., Falkowski, B.J., Pickett, J.S., Santolik, O., and Lakhina, G.S., Plasmaspheric hiss properties: observations from polar, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 414–431. https://doi.org/10.1002/2014JA020518

    Article  Google Scholar 

  48. Vershinin, E.F. and Ponomarev, E.A., On the classification of continuous VLF radio emission of the upper atmosphere, in Zemnoi magnetizm, polyarnye siyaniya i ul’tranizkochastotnoe izluchenie (Terrestrial Magnetism, Polar Auroras, and VLF Emission), 1966, vol. 1, pp. 35–44.

    Google Scholar 

  49. Vershinin, E.F., Gorshkov, Yu.N., and Ponomarev, E.A., The characteristics and conditions for the emergence of VLF emission bursts of the noise storm class, Issled. Geomagn. Aeron. Fiz. Solntsa, 1974, vol. 30, pp. 3–9.

    Google Scholar 

  50. Yearby, K.H. and Smith, A.J., The polarization of whistlers received on the ground near L = 4, J. Atmos. Terr. Phys., 1994, vol. 56, pp. 1499–1512. https://doi.org/10.1016/0021-9169(94)90117-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Manninen or N. G. Kleimenova.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manninen, J., Kleimenova, N.G., Gromova, L.I. et al. Daytime VLF Emissions during the Magnetic Storm Recovery Phase: the Event of January 5, 2015. Geomagn. Aeron. 60, 301–310 (2020). https://doi.org/10.1134/S0016793220030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030111

Navigation