Skip to main content
Log in

Geomagnetic Variations during the Fall of Meteorites

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of instrumental observations of variations in the Earth’s magnetic field conducted at a number of observatories of the INTERMAGNET network and the Mikhnevo geophysical observatory of Institute of Geosphere Dynamics of Russian Academy of Sciences, during the fall of meteorites have been analyzed. The Vitim (September 24, 2002), Chelyabinsk (February 15, 2013), Romania (January 7, 2015), Buryatia (October 25, 2016), Khakassia (December 6, 2016), St. Petersburg (September 11, 2017), and Lipetsk (June 21, 2018) events have been used to show the geomagnetic effect of falling cosmic bodies. The effect has a nonlocal character, occurs simultaneously, and is observed at distances up to 7000 km from the location of falling cosmic bodies. The amplitude of induced geomagnetic variations has been found to depend weakly on the distance to the event location. The resulting data can be used to verify theoretical and computational models of the geophysical processes accompanying the fall of meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Nemchinov, I.V., Consequences of impacts of cosmic bodies on the surface of the Earth, Hazards due to Comets and Asteroids, Gehrels, T., Ed., Tucson: University of Arizona Press, 1994, pp. 721–778.

    Google Scholar 

  2. Adushkin, V.V. and Spivak, A.A., Fizicheskie polya v pripoverkhnostnoi geofizike (Physical Fields in Near-Surface Geophysics), Moscow: GEOS, 2014.

  3. Adushkin, V.V., Popova, O.P., Rybnov, Yu.S., Kudryavtsev, V.I., Mal’tsev, A.L., and Kharlamov, V.A., Geophysical effects of the Vitim bolide, Dokl. Earth Sci., 2004, vol. 397, no. 6, pp. 861–864.

    Google Scholar 

  4. Adushkin, V.V., Rybnov, Yu.S., Spivak, A.A., and Kharlamov, V.A., Evaluation of the energy sources of infrasound disturbances in the atmosphere from waveform spectra, Triggernye effekty v geosistemakh (Trigger Effects in Geosystems), Moscow: GEOS, 2017, pp. 416–426.

    Google Scholar 

  5. Asteroidno–kometnaya opasnost’: vchera, segodnya, zavtra (Asteroid–Comet Hazard: Past, Present, and Future), Shustov, B.M. and Rykhlova, L.V., Eds., Moscow: Fizmatlit, 2010.

    Google Scholar 

  6. Beech, M. and Foschini, L.A., A space charge model for electrophonic bursters, Astron. Astrophys., 1999, vol. 345, pp. L27–L31.

    Google Scholar 

  7. Berngardt, O.I., Dobrynina, A.A., Zherebtsov, G.A., Mikhalev, A.V., Perevalova, N.P., Ratovskii, K.G., Rakhmatullin, R.A., San’kov, V.A., and Sorokin, A.G., Geophysical phenomena accompanying the Chelyabinsk meteoroid impact, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 945–947.

    Article  Google Scholar 

  8. Binzel, R.P., The Torino impact hazard scale, Planet. Space Sci., 2000, vol. 48, pp. 297–303.

    Article  Google Scholar 

  9. Borovička, J., Spurný, P., and Grigore, V.I., The January 7, 2015, superbolide over Romania and structural diversity of meter-sized asteroids, Planet. Space Sci., 2017, vol. 143, pp. 147–158.

    Article  Google Scholar 

  10. Bronshten, R.P., A magnetohydrodynamic mechanism for generating radio waves by bright fireballs, Sol. Syst. Res., 1983, vol. 17, pp. 70–74.

    Google Scholar 

  11. Bronshten, V.A., Electrical and electromagnetic phenomena associated with the meteor flight, Sol. Syst. Res., 1991, vol. 25, pp. 93–104.

    Google Scholar 

  12. Bronshten, V.A., Magnetic effect of the Tungus meteorite, Geomagn. Aeron. (Engl. Transl.), 2002, vol. 42, no. 6, pp. 816–818.

  13. Chernogor, L.F., Physical processes accompanying the flight of the Vitim bolide on September 24, 2002, Vestn. Astron. Shk., 2009, vol. 6, no. 1, pp. 30–43.

    Google Scholar 

  14. Chernogor, L.F., Geomagnetic effect of launches and flights of large spacecraft, Cosmic Res., 2013, vol. 51, no. 6, pp. 413–426.

    Article  Google Scholar 

  15. Chernogor, L.F., Magnetospheric effects during the approach of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 2, pp. 252–265.

  16. Dubrov, A.M., Mnogomernye statisticheskie metody: uchebnik dlya studentov ekonomicheskikh spetsial’nostei vysshikh uchebnykh zavedenii (Multidimensional Statistical Methods: A Textbook for Students of Economic Specialties of Higher Educational Institutions), Moscow: Finansy i statistika, 2003.

  17. Emel’yanenko, V.V., Popova, O.P., Chugai, N.N., et al., Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013), Sol. Syst. Res., 2013, vol. 47, no. 4, pp. 240–254.

    Article  Google Scholar 

  18. Grachev, A.V., On the recovery of gaps in experimental data, Vestn. NNGU im. N. I. Lobachevskogo: Ser. Radiofiz., 2004, no. 2, pp. 15–23.

  19. Gvishiani, A.D. and Lukianova, R.Yu., Geoinformatics and observations of the Earth’s magnetic field: The Russian segment, Izv., Phys, Solid Earth, 2015, vol. 51, no. 2, pp. 157–175.

    Article  Google Scholar 

  20. Hoaglin, D.C., Mosteller, F., and Tukey, J.W., Understanding Robust and Exploratory Data Analysis, New York: John Wiley and Sons, 2000.

    Google Scholar 

  21. Ivanov, K.G., Geomagnetic phenomena observed at the Irkutsk magnetic observatory after the Tungus meteorite fall, Meteoritika, 1961, no. 21, pp. 46–48.

  22. Katastroficheskie vozdeistviya kosmicheskikh tel (Catastrophic Impact of Space Bodies), Adushkin, V.V. and Nemchinov, I.V., Eds., Moscow: Akademkniga, 2005.

    Google Scholar 

  23. Keay, C.S.L., Electrophonic sounds from large meteor fireballs, Meteoritics, 1992, vol. 27, pp. 144–148.

    Article  Google Scholar 

  24. Kerridge, D., Intermagnet: worldwide near-real-time geomagnetic observatory data, Proc. Workshop on Space Weather ESTEC, 2001.

  25. Kovaleva, I.Kh., Kovalev, A.T., Popova, O.P., et al., Electromagnetic effects generated in the Earth’s ionosphere during the fall of meteorites, Din. Protsessy Geosferakh, 2014, vol. 5, pp. 26–47.

  26. Kuz’micheva, M.Yu. and Loseva, T.V., Assessment of the geomagnetic effect during the Tungus event of 1908, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2010, pp. 261–269.

    Google Scholar 

  27. Kuz’micheva, M.Yu. and Loseva, T.V., Global ionospheric effects caused by the Chelyabinsk event of February 15, 2013, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2013, vol. 4, pp. 32–41.

    Google Scholar 

  28. Kuz’micheva M.Yu., Loseva T.V., Lyakhov A.N. Ionosfernyi effekt Chelyabinskogo sobytiya, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 86–95.

    Google Scholar 

  29. Nemchinov, I.V., Loseva, T.V., and Merkin, V.G., Assessment of the geomagnetic effect during the fall of the Tungus meteoroide, Fizicheskie protsessy v geosferakh: ikh proyavleniya i vzaimodeistvie (Physical Processes in Geospheres: Their Manifestations and Interaction), Moscow: IDG RAS, 1999, pp. 324–338.

    Google Scholar 

  30. Popova, O.P., Jenniskens, P., Emel’yanenko, V.V., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, pp. 1069–1073.

    Article  Google Scholar 

  31. Popova, O.P., Jenniskens, P., and Glazachev, D.O., Fragmentation of the Chelyabinsk meteoroid, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 59–78.

    Google Scholar 

  32. Price, C. and Blum, M., ELF/VLF radiation produced by the 1999 Leonid meteors, Earth, Moon, Planets, 2000, vols. 82–83, pp. 545–554.

    Google Scholar 

  33. Rybnov, Yu.S., Popova, O.P., and Kharlamov, V.A., Evaluation of the energy of the Chelyabinsk bolide from power spectra of long-period oscillations of atmospheric pressure, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 78–85.

    Google Scholar 

  34. Savchenko, Yu.N., Geomagnetic disturbances caused by shock waves of large meteoric bodies. I, Geomagn. Aeron., 1975, no. 6, pp. 1047–1053.

  35. Savchenko, Yu.N., Geomagnetic disturbances caused by shock waves of large meteoric bodies. II, Geomagn. Aeron., 1976, no. 6, pp. 518–525.

  36. Svettsov, V.V., Artem’eva, N.A., Popova, O.P., and Shuvalov, V.V., The fall of the Chelyabinsk meteorite as a typical event in the Earth’s history, Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Moscow: GEOS, 2014, vol. 5, pp. 7–20.

    Google Scholar 

  37. Tietjen, G.L. and Moore, R.H., Some Grubbs-type statistics for the detection of several outliers, Technometrics, 1972, vol. 14, pp. 583–597.

    Article  Google Scholar 

  38. Yazev, S.A. and Antipin, V.S., In the wake of the Vitim bolide, Zemlya Vselennaya, 2004, no. 5, pp. 59–72.

Download references

Funding

This study was supported by the Presidium of the Russian Academy of Sciences, Basic Research Program no. 19 “Basic Problems in Geological and Geophysical Studies of Lithospheric Processes.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Spivak or S. A. Riabova.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.A., Riabova, S.A. Geomagnetic Variations during the Fall of Meteorites. Geomagn. Aeron. 59, 612–622 (2019). https://doi.org/10.1134/S0016793219050116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219050116

Navigation