Skip to main content
Log in

Modeling of the Auroral Hiss Propagation from the Source Region to the Ground

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A numerical model of auroral hiss propagation from the region of its generation to the ground surface is developed for the interpretation of results from ground-based high-latitudinal VLF observations. The model includes modules describing the statistical properties of electrostatic whistler waves generated due to Cerenkov resonance at the heights of 6000–20 000 km, the propagation of these waves in the magnetosphere to the region of upper ionosphere (under 5000 km), which is filled with small-scale irregularities of electron concentration, the scattering of electrostatic waves from these irregularities into the transition cone, and further propagation of the waves through the lower ionosphere down to the ground surface. The modeling results agree with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Banks, P., Collision frequencies and energy transfer electrons, Planet. Space Sci., 1966, vol. 14, no. 11, pp. 1085–1103.

    Article  Google Scholar 

  2. Beghin, C., Rauch, J.L., and Bosqued, J.M., Electrostatic plasma waves and HF auroral hiss generated at low altitude, J. Geophys. Res., 1989, vol. 94, pp. 1359–1378.

    Article  Google Scholar 

  3. Bell, T.F. and Ngo, H.D., Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities, J. Geophys. Res., 1990, vol. 95, pp. 149–172.

    Article  Google Scholar 

  4. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1980.

    Google Scholar 

  5. Budden, K.G., The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge: Cambridge University Press, 1985.

    Book  Google Scholar 

  6. Davies, A., Lester, M., and Robinson, T.R., Deriving the normalized ion-neutral collision frequency from EISCAT observations, Ann. Geophys., 1997, vol. 15, no. 12, pp. 1557–1569.

    Article  Google Scholar 

  7. Fedorenko, Y., Tereshchenko, E., Pilgaev, S., Grigoryev, V., and Blagoveshchenskaya, N., Polarization of ELF waves generated during “beating-wave” heating experiment near cutoff frequency of the Earth–ionosphere waveguide, Radio Sci., 2014, vol. 49, pp. 1254–1264. https://doi.org/10.1002/2013RS005336

    Article  Google Scholar 

  8. Gallagher, D.L. and Craven, P.D., Global core plasma model, J. Geophys. Res., 2000, vol. 105, pp. 18819–18833.

    Article  Google Scholar 

  9. Horne, R.B., Ray tracing of electrostatic waves in a hot plasma and its application to the generation of terrestrial myriametric radiation, Geophys. Res. Lett., 1988, vol. 15, no. 6, pp. 553–556.

    Article  Google Scholar 

  10. Kimura, I., Effects of ions on whistler-mode ray tracing, Radio Sci., 1966, vol. 1, no. 3, pp. 269–284.

    Article  Google Scholar 

  11. Kleimenova, N.G., Manninen, J., Gromova, L.I., Gromov, S.V., and Turunen, T., Bursts of auroral-hiss VLF emissions on the Earth’s surface at L ~ 5.5 and geomagnetic disturbances, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 272–280.

  12. Kuzichev, I.V., On whistler mode wave scattering from density irregularities in the upper ionosphere, J. Geophys. Res., 2012, vol. 117, A06325.

    Article  Google Scholar 

  13. LaBelle, J. and Treumann, R., Auroral radio emissions, 1. Hisses, roars, and bursts, Space Sci. Rev., 2002, vol. 101, no. 3, pp. 295–440.

    Article  Google Scholar 

  14. Lehtinen, N.G. and Inan, U.S., Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet, J. Geophys. Res., 2008, vol. 113, A06301.

    Article  Google Scholar 

  15. Lehtinen, N.G. and Inan, U.S., Full-wave modeling of transionospheric propagation of VLF waves, Geophys. Res. Lett., 2009, vol. 36, L03104.

    Article  Google Scholar 

  16. Maggs, J.E., Coherent generation of VLF hiss, J. Geophys. Res., 1976, vol. 81, pp. 1707–1724.

    Article  Google Scholar 

  17. Makita, K., VLF-LF hiss emissions associated with aurora, Mem. Natl. Inst. Polar Res. Tokyo: Ser. A, 1979, no. 16, pp. 1–126.

  18. Manninen, J., Turunen, T., Kleimenova, N., Rycroft, M., Gromova, L., and Sirviö, I., Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland, Environ. Res. Lett., 2016, vol. 11, no. 12, 124006. https://doi.org/10.1088/1748-9326/11/12/124006

    Article  Google Scholar 

  19. Mosier, S.R. and Gurnett, D.A., Observed correlation between auroral and VLF emissions, J. Geophys. Res., 1972, vol. 77, no. 7, pp. 1137–1145.

    Article  Google Scholar 

  20. Munteanu, C., Negrea, C., Echim, M., and Mursula, K., Effect of data gaps: Comparison of different spectral analysis methods, Ann. Geophys., 2016, vol. 34, pp. 437–449. https://doi.org/10.5194/angeo-34-437-2016

    Article  Google Scholar 

  21. Murzaeva, N.N., Regular noise background of VLF emission, Nizkochastotnye volny i signaly vo vneshnei ionosfere (Low-frequency waves and signals in the outer ionosphere), Kol’skii filial AN SSSR, 1974, pp. 20–23.

  22. Nikitenko, A.S., Lebed’, O.M., and Fedorenko, Yu.V., The first results of localization of natural ELF/VLF emissions at high latitudes according to ground-based observation data, Trudy 41-go Seminara “Fizika avroral’nykh yavlenii” (Proceedings of the 41th Seminar “Physics of Auroral Phenomena”), Apatity, 2018, pp. 61–65.

  23. Ozaki, M., Yagitani, S., Nagano, I., Hata, Y., Yamagishi, H., Sato, N., and Kadokura, A., Localization of VLF ionospheric exit point by comparison of multipoint ground-based observation with full-wave analysis, Polar Sci., 2008, vol. 2, pp. 237–249.

    Article  Google Scholar 

  24. Pulliam, D.M., Anderson, H.R., Stamnes, K., and Rees, M.H., Auroral electron acceleration and atmospheric interaction (1) rocket-born observation and (2) scattering calculation, J. Geophys. Res., 1981, vol. 86, pp. 2397–2404.

    Article  Google Scholar 

  25. Sazhin, S.S., Bullough, K., and Hayakawa, M., Auroral hiss: A review, Planet. Space Sci., 1993, vol. 41, no. 2, pp. 153–166.

    Article  Google Scholar 

  26. Shklyar, D., Chum, J., and Jirícek, F., Characteristic properties of Nu whistlers as inferred from observations and numerical modelling, Ann. Geophys., 2004, vol. 22, no. 10, pp. 3589–3606.

    Article  Google Scholar 

  27. Smith, A.J. and Jenkins, P.J., A survey of natural electromagnetic noise in the frequency range F = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, pp. 263–277.

    Article  Google Scholar 

  28. Sonwalkar, V.S., Magnetospheric LF-, VLF-, and ELF-waves, Handbook of Atmospheric Electrodynamics, Boca Raton, Fla: CRC, 1995, pp. 407–462.

    Google Scholar 

  29. Sonwalkar, V.S. and Harikumar, J., An explanation of ground observations of auroral hiss: Role of density depletions and meter-scale irregularities, J. Geophys. Res., 2000, vol. 105, pp. 18867–18883.

    Article  Google Scholar 

  30. Spasojevic, M., Statistics of auroral hiss and relationship to auroral boundaries and upward current regions, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 7547–7560. https://doi.org/10.1002/2016JA022851

    Article  Google Scholar 

  31. Srivastava, R.N., VLF hiss, visual aurora and geomagnetic activity, Planet. Space Sci., 1976, vol. 24, pp. 375–379.

    Article  Google Scholar 

  32. Stix, T.N., Waves in Plasmas, New York: Springer, 1992.

    Google Scholar 

  33. Tsyganenko, N.A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 1995, vol. 100, pp. 5599–5612.

    Article  Google Scholar 

  34. Vershinin, E.F., On the regular noise background of continuous ULF emission in the upper atmosphere, Zemnoi magnetizm, polyarnye siyaniya i ul’tranizkochastotnoe izluchenie (Terrestrial Magnetism, Polar Auroras, and ULF Emission), vol. 1, Irkutsk: SibIZMIR, 1966, pp. 44–49.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Lebed’.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebed’, O.M., Fedorenko, Y.V., Manninen, J. et al. Modeling of the Auroral Hiss Propagation from the Source Region to the Ground. Geomagn. Aeron. 59, 577–586 (2019). https://doi.org/10.1134/S0016793219050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219050074

Navigation