Skip to main content
Log in

Diurnal Variations in the Statistical Characteristics of the Variability of the Midlatitude NmF2 during Quiet Geomagnetic Conditions at Low Solar Activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The work examines diurnal variations in the statistical characteristics of the variability of the electron number density NmF2 of the maximum of the ionspheric F2 layer during quiet geomagnetic conditions at low solar activity based on hourly ionosonde measurements of the critical frequency of the ionspheric F2 layer from 1957 to 2017 over Moscow. The statistical parameters of NmF2 are calculated for each month M of each year at the universal time UT = 0, 1, … 23 h: the mathematical expectation NmF2E; the most probable value NmF2MP; the average monthly median NmF2MED; the arithmetic mean NmF2A; the standard deviations of NmF2 from NmF2E, NmF2MP, and NmF2MED; and the coefficients of variation CVE, CVMP, and CVMED of NmF2 relative to NmF2E, NmF2MP, and NmF2MED, respectively. It follows from the calculations that the CVE, CVMED, and CVMP values vary within the intervals of 12–43%, 12–60%, and 13–75%, respectively, and, in the vast majority of cases, CVE(UT, M) < CVMED(UT, M) and CVE(UT, M) < CVMP(UT, M). If the coefficient CVE in each month of each year is compared for different time points, the lowest CVE value varies from 12% (July) to 19% (December) and occurs during daytime, while the highest CVE value lies in the interval from 26% (June) to 43% (December). For each UT, the lowest and highest values of this coefficient in the autumn, winter, and spring months are greater than those for the summer months. It was found that the difference of NmF2A(UT, M) from NmF2E(UT, M) does not exceed 0.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Araujo-Pradere, E.A., Fuller-Rowell, T.J., and Bilitza, D., Ionospheric variability for quiet and perturbed conditions, Adv. Space Res., 2004, vol. 34, no. 9, pp. 1914–1921.https://doi.org/10.1016/j.asr.2004.06.007

  2. Araujo-Pradere, E.A., Fuller-Rowell, T.J., and Codrescu, M.V., Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Sci., 2005, vol. 40, no. 5, p. RS5009.https://doi.org/10.1029/2004RS003179

  3. Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., and Reinisch, B., The international reference ionosphere 2012: A model of international collaboration, J. Space Weather Space Clim., 2014, vol. 4, no. A07, pp. 1–12. https://doi.org/10.1051/swsc/2014004

    Article  Google Scholar 

  4. Forbes, J.M., Palo, S.E., and Zhang, X., Variability of the ionosphere, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 8, pp. 685–693.https://doi.org/10.1016/S1364-6826(00)00029-8

  5. Gatti, P.L., Probability Theory and Mathematical Statistics for Engineers, London: Spon Press, 2005.

    Book  Google Scholar 

  6. Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 1987, vol. 92, no. 5, pp. 4649–4662. https://doi.org/10.1029/JA092iA05p04649

    Article  Google Scholar 

  7. Kremer, N.Sh., Teoriya veroyatnostei i matematicheskaya statistika (Probability Theory and Mathematical Statistics), Moscow: YuNITI-DANA, 2012.

  8. Liu, H.-L. and Richmond, A.D., Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity, J. Geophys. Res., 2013, vol. 118, no. 9, pp. 2452–2465.https://doi.org/10.1002/jgra.50265

  9. Pavlov, A.V., The low and middle latitude semi-annual anomaly in NmF2 near noon: A statistical study, Adv. Space Res., 2012, vol. 49, no. 5, pp. 922–936. https://doi.org/10.1016/j.asr.2011.12.024

    Article  Google Scholar 

  10. Pavlov, A.V., Causes of the mid-latitudinal daytime NmF2 semi-annual anomaly at solar minimum, J. Atmos. Sol.-Terr. Phys., 2018, vol. 169, pp. 6–15. https://doi.org/10.1016/j.jastp.2017.12.015

    Article  Google Scholar 

  11. Pavlov, A.V. and Pavlova, N.M., Effect of solar radiation refraction on the zenith angle and times of the sunrise and sunset in the atmosphere, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 2, pp. 219–224.

  12. Pavlov, A.V. and Pavlova, N.M., Variations in statistical parameters of the NmF2 winter anomaly with latitude and solar activity, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 3, pp. 335–343.

  13. Pavlov, A.V. and Pavlova, N.M., Variations in statistical parameters of the NmF2 equinoctial asymmetry with latitude and solar activity near noon, Adv. Space Res., 2013, vol. 51, no. 11, pp. 2018–2034. https://doi.org/10.1016/j.asr.2013.01.007

    Article  Google Scholar 

  14. Pavlov, A.V. and Pavlova, N.M., Influence of the equinoctial asymmetry on the semi-annual anomaly in NmF2 near noon in the northern geographic hemisphere: A statistical study, Adv. Space Res., 2014, vol. 53, no. 4, pp. 619–634. https://doi.org/10.1016/j.asr.2013.12.014

    Article  Google Scholar 

  15. Pavlov, A.V. and Pavlova, N.M., Dependences of the NmF2 midlatitude statistical characteristics on the month of a year under geomagnetically quiet conditions near noon at low solar activity, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 487–492. https://doi.org/10.7868/S0016794015040112

  16. Pavlov, A.V. and Pavlova, N.M., Long-term monthly statistics of mid-latitudinal NmF2 in the northern geographic hemisphere during geomagnetically quiet and steadily low solar activity conditions, J. Atmos. Sol.-Terr. Phys., 2016, vol. 142, pp. 83–97. https://doi.org/10.1016/j.jastp.2016.03.001

    Article  Google Scholar 

  17. Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., A statistical study of the mid-latitude nmF2 winter anomaly, Adv. Space Res., 2010, vol. 45, no. 3, pp. 374–385. https://doi.org/10.1016/j.asr.2009.09.003

    Article  Google Scholar 

  18. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. 12, pp. SIA 15-1–SIA 15-16. https://doi.org/10.1029/2002JA009430

  19. Piggott, W.R. and Rawer, K., U.R.S.I. Handbook of Ionogram Interpretation and Reduction, Asheville, N.C.: National Oceanic and Atmospheric Administration, 1972; Moscow: Nauka, 1978.

  20. Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomical calculations, J. Geophys. Res., 1994, vol. 99, no. 5, pp. 8981–8986. https://doi.org/10.1029/94JA00518

    Article  Google Scholar 

  21. Richmond, A.D. and Lu, G., Upper-atmospheric effects of magnetic storms: A brief tutorial, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 12, pp. 1115–1127. https://doi.org/10.1016/S1364-6826(00)00094-8

    Article  Google Scholar 

  22. Rishbeth, H. and Mendillo, M., Patterns of F2-layer variability, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 15, pp. 1661–1680. https://doi.org/10.1016/S1364-6826(01)00036-0

    Article  Google Scholar 

  23. Ross, S.M., Introduction to Probability and Statistics for Engineers and Scientists, Amsterdam: Elsevier, 2004.

    Google Scholar 

  24. Schunk, R.W. and Nagy, A.F., Ionospheres. Physics, Plasma Physics, and Chemistry, Cambridge: Cambridge University Press, 2009.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.V., Pavlova, N.M. Diurnal Variations in the Statistical Characteristics of the Variability of the Midlatitude NmF2 during Quiet Geomagnetic Conditions at Low Solar Activity. Geomagn. Aeron. 59, 593–605 (2019). https://doi.org/10.1134/S0016793219040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219040133

Navigation