Skip to main content
Log in

Formation of a Ring-Shaped Region of Increased Electron Temperature in the Subauroral Ionosphere in Winter

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of numerical simulations of the electron temperature (Te) are compared with measurement data provided by the CHAMP satellite to show the possibility of the formation of a ring-shaped region of temperature increase in the subauroral ionosphere surrounding the auroral oval in the range of 04–07 h (UT) when the high-latitude ionosphere is on the night (shaded) side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Brace, L.H., Theis, R.F., and Hoegy, W.R., A global view of F-region electron density and temperature at solar maximum, Geophys. Res. Lett., 1982, vol. 9, no. 9, pp. 989–992.

    Article  Google Scholar 

  2. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  3. David, M., Schunk, R.W., and Sojka, J.J., The effect of downward electron heat flow and electron cooling processes in the high-latitude ionosphere, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 5, pp. 2399–2409. https://doi.org/10.1016/j.jastp.2011.08.009

    Article  Google Scholar 

  4. Golikov, I.A., Gololobov, A.Yu., and Popov, V.I., Modeling the electron temperature distribution in the F2 region of high-latitude ionosphere for winter solstice conditions, Sol.-Terr. Phys., 2016, vol. 2, no. 4, pp. 54–62.

    Google Scholar 

  5. Gololobov, A.Yu., Golikov, I.A., and Popov, V.I., Modeling the high-latitude ionosphere taking into account the divergence between geographical and geomagnetic poles, Vestn. Sev.-Vost. Fed. Univ., 2014, vol. 11, no. 2, pp. 46–54.

    Google Scholar 

  6. Heppner, J.P., Empirical model of high electric field, J. Geophys. Res., 1977, vol. 82, no. 7, pp. 1115–1125.

    Article  Google Scholar 

  7. Klimenko, V.V., Koren’kov, Yu.N., Namgaladze, A.A., Karpov, I.V., Surotkin, V.A., and Naumova, N.M., Numerical simulation of “hot spots” in the Earth’s ionosphere, Geomagn. Aeron., 1991, vol. 31, no. 3, pp. 554–557.

    Google Scholar 

  8. Kofman, W., Very high electron temperature in the daytime F region at Sondrestrom, Geophys. Res. Lett., 1984, vol. 1, no. 9, pp. 912–922.

    Google Scholar 

  9. Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

  10. Liu, X. and Liu, W., A new plasmapause location model based on THEMIS observations, Sci. China, Earth Sci., 2014, vol. 57, pp. 2552–2557. https://doi.org/10.1007/s11430-014-4844-1

    Article  Google Scholar 

  11. Maier, E.J., Chandra, S., Brace, L., Hoffman, J.H., Shepherd, G.G., and Whitteker, J.H., The SAR arc event observed during the December 1971 magnetic storm, J. Geophys. Res., 1975, vol. 80, no. 34, pp. 4591–4597.

    Article  Google Scholar 

  12. Mingalev, G.I. and Mingaleva, V.S., Simulation of the spatial structure of the high-latitude F-region for different conditions of solar illumination of the ionosphere, in Proc. 25th Annual Seminar “Physics of Auroral Phenomena”, Apatity, Russia, 2002, pp. 107−110.

  13. Prölss, G.W., Ionospheric F-region storms: Unsolved problems, in Characterising the Ionosphere. Meeting Proceedings. RTO-MP-IST-056, Neuilly-sur-Seine, France: RTO, 2006, pp. 10-1–10-20.

  14. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, pp. 129–134.

    Article  Google Scholar 

  15. Schunk, R.W., Sojka, J.J., and Bowline, M.D., Theoretical study of the electron temperature in the high-latitude ionosphere for solar maximum and winter conditions, J. Geophys. Res., 1986, vol. 91, no. A11, pp. 12041–12054.

    Article  Google Scholar 

  16. Sojka, J.J., Raitt, W.J., and Schunk, RW., Effect of displaced geomagnetic and geographic poles on high-latitude plasma convection and ionospheric depletion, J. Geophys. Res., 1979, vol. 84, no. 10, pp. 5943–5951.

    Article  Google Scholar 

  17. Vorobjev, V.G., Yagodkina, O.I., and Katkalov, Yu.V., Auroral precipitation model and its application to ionospheric and magnetospheric studies, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 157–171.

    Article  Google Scholar 

  18. Xiong, C., Lühr, H., and Ma, S.Y., The subauroral electron density trough: Comparison between satellite observations and IRI-2007 model estimates, Adv. Space Res., 2013, vol. 51, no. 4, pp. 536–544.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project nos. 15-45-05090-r_vostok_a and 15-45-05066-r_vostok_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Golikov, A. Yu. Gololobov or V. I. Popov.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikov, I.A., Gololobov, A.Y., Popov, V.I. et al. Formation of a Ring-Shaped Region of Increased Electron Temperature in the Subauroral Ionosphere in Winter. Geomagn. Aeron. 59, 199–204 (2019). https://doi.org/10.1134/S0016793219020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219020087

Navigation