Skip to main content
Log in

Possible Mechanism for Damping of Electrostatic Instability Related to Inhomogeneous Distribution of Energy Density in the Auroral Ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Satellite observations show that the electrostatic instability, which is expected to occur in most cases due to an inhomogeneous energy density caused by a strongly inhomogeneous transverse electric field (shear of plasma convection velocity), occasionally does not develop inside nonlinear plasma structures in the auroral ionosphere, even though the velocity shear is sufficient for its excitation. In this paper, it is shown that the instability damping can be caused by out-of-phase variations of the electric field and field-aligned current acting in these structures. Therefore, the mismatch of sources of free energy required for the wave generation nearly nullifies their common effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chernyshov, A.A., Il’yasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261.

    Article  Google Scholar 

  • Chernyshov, A.A., Il’yasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., Kozelov, B.V., Features of wave excitation of the electrostatic ion cyclotron type in the auroral ionosphere, Cosmic Res., 2016, vol. 54, no. 1, pp. 52–60.

    Article  Google Scholar 

  • Drummond, W.E. and Rosenbluth, M.N., Anomalous diffusion arising from microinstabilities in a plasma, Phys. Fluids, 1962, vol. 5, pp. 1507–1513. doi 10.1063/1.1706559

    Article  Google Scholar 

  • Ganguli, G. and Palmadesso, P.J., Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields, Geophys. Res. Lett., 1988, vol. 15, pp. 103–106. doi 10.1029/GL015i001p00103

    Article  Google Scholar 

  • Ganguli, G., Lee, Y.C., and Palmadesso, P.G., Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field, Phys. Fluids, 1985, vol. 28, pp. 761–763. doi 10.1063/1.865096

    Article  Google Scholar 

  • Ganguli, G., Lee, Y.C., and Palmadesso, P.G., Kinetic theory for electrostatic waves due to transverse velocity shears, Phys. Fluids, 1988, vol. 31, pp. 823–838. doi 10.1029/GL012i010p00643

    Article  Google Scholar 

  • Gavrishchaka, V., Koepke, M.E., and Ganguli, G., Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow, Phys. Plasmas, 1996, vol. 3, pp. 3091–3106. doi 10.1063/1.871656

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Mingalev, O.V., Fedorenko, Y.V., and Melnik, M.N., Magnetic perturbations in the events of broadband ELF turbulence observed by FAST, Geophys. Res. Lett., 2011, vol. 38, no. 17. doi 10.1029/2011GL049003

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Mingalev, I.V., Melnik, M.N., and Lubchic, A.A., Evaluation of a spaceobserved electric field structure for the ability to destabilize inhomogeneous energy-density-driven waves, Ann. Geophys., 2014a, vol. 32, pp. 1–6. doi 10.5194/angeo-32-12014

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A., Mogilevsky, M.M., and Ilyasov, A.A., Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere, Phys. Plasmas, 2014b, vol. 21, no. 8, 082903. doi 10.1063/1.4891668

    Article  Google Scholar 

  • Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region, Phys. Plasmas, 2015, vol. 22, no. 3, 032906. doi 10.1063/1.4916125

    Article  Google Scholar 

  • Ilyasov, A.A., Chernyshov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves, J. Geophys. Res., 2016, vol. 121, no. 3, pp. 2693–2703. doi 10.1002/2015JA022117

    Article  Google Scholar 

  • Kadomtsev, B.B, Mikhailovskii, A.B., and Timofeev, A.V., Negative-energy waves in dispersive media, Zh. Eksp. Teor. Fiz., 1964, vol. 47, pp. 2266–2269.

    Google Scholar 

  • Kindel, J.M. and Kennel, C.F., Topside current instabilities, J. Geophys. Res., 1971, vol. 76, pp. 3055–3078. doi 10.1029/JA076i013p03055

    Article  Google Scholar 

  • Kintner, P.M., Franz, J., Schuc, P., and Klatt, E., Interferometric coherency determination of wavelength or what are broadband ELF waves?, J. Geophys. Res., 2000, vol. 105, pp. 237–250. doi 10.1029/1999JA00323

    Article  Google Scholar 

  • Nezlin, M.V., Negative-energy waves and the anomalous Doppler effect, Phys.-Usp., 1976, vol. 19, no. 11, pp. 946–954.

    Google Scholar 

  • Onishchenko, O.G., Krasnoselskikh, V.G., and Pokhotelov, O.A., Drift-Alfvén vortices at the ion Larmor radius scale, Phys. Plasmas, 2008, vol. 11, no. 2, 022903. doi 10.1063/1.2844744

    Article  Google Scholar 

  • Pokhotelov, O.A., Onishchenko, O.G., Sagdeev, R.Z., and Treumann, R.A., Nonlinear dynamics of inertial Alfvén waves in the upper ionosphere: Parametric generation of electrostatic convective cells, J. Geophys. Res., 2003, vol. 108, no. A7. doi 10.1029/2003JA009888

    Google Scholar 

  • Reynolds, M.A. and Ganguli, G., Ion Bernstein waves driven by two transverse flow layers, Phys. Plasmas, 1998, vol. 5, pp. 2504–2512. doi 10.1063/1872934

    Article  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., et al., Small scale Alfvénic structure in the aurora, Space Sci. Rev., 2000, vol. 92, pp. 423–533.

    Article  Google Scholar 

  • Tam, S.W.Y., Chang, T., Kintner, P.M., and Klatt, E., Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone, Geophys. Res. Lett., 2005, vol. 32, no. 5. doi 10.1029/2004GL021445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chernyshov.

Additional information

Original Russian Text © I.V. Golovchanskaya, B.V. Kozelov, A.A. Chernyshov, A.A. Ilyasov, M.M. Mogilevsky, 2018, published in Geomagnetizm i Aeronomiya, 2018, Vol. 58, No. 2, pp. 234–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovchanskaya, I.V., Kozelov, B.V., Chernyshov, A.A. et al. Possible Mechanism for Damping of Electrostatic Instability Related to Inhomogeneous Distribution of Energy Density in the Auroral Ionosphere. Geomagn. Aeron. 58, 223–228 (2018). https://doi.org/10.1134/S0016793218020081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218020081

Navigation