Skip to main content
Log in

Winter anomaly of the E-layer critical frequency in the nighttime auroral zone

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22−02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bilitza, D., The international reference ionosphere—status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.

    Article  Google Scholar 

  • Bryunelli B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

    Google Scholar 

  • Danilov, A.D., Rodevich, A.Yu., and Smirnova, N.V., Parametric model of the D-region incorporating meteorological effects, Geomagn. Aeron., 1991, vol. 31, no. 5, pp. 881–885.

    Google Scholar 

  • Deminov, M.G., Kim, V.P., and Khegai, V.V., Influence of field-aligned electric fields on the ionospheric structure, Geomagn. Aeron., 1980, vol. 20, no. 5, pp. 837–840.

    Google Scholar 

  • Garcia, R.R., Solomon, S., Avery, S.K., and Reid, G.C., Transport of nitric oxide and the D region winter anomaly, J. Geophys. Res., 1987, vol. 92, no. D1, pp. 977–994.

    Article  Google Scholar 

  • Hunsucker, R.D. and Hargreaves, J.K., The High-Latitude Ionosphere and Its Effects on Radio Propagation, Cambridge: Cambridge University Press, 2003.

    Google Scholar 

  • Huo, X.L., Yuan, Y.B., Ou, J.K., Zhang, K.F., and Bailey, G.J., Monitoring the global-scale winter anomaly of total electron contents using GPS data, Earth Planets Space, 2009, vol. 61, no. 8, pp. 1019–1024.

    Article  Google Scholar 

  • Jakowski, N. and Förster, M., About the nature of the night-time winter anomaly effect (NWA) in the F-region of the ionosphere, Planet. Space Sci., 1995, vol. 43, no. 5, pp. 603–612.

    Article  Google Scholar 

  • Jakowski, N., Hoque, M.M., Kriegel, M., and Patidar, V., The persistence of the NWA effect during the low solar activity period 2007–2009, J. Geophys. Res.: Space, 2015, vol. 120, pp. 9148–9160. doi 10.1002/2015JA021600

    Article  Google Scholar 

  • Lee, W.K., Kil, H., Kwak, Y.S., Wu, Q., Cho, S., and Park, J.U., The winter anomaly in the middle-latitude F region during the solar minimum period observed by the constellation observing system for meteorology, ionosphere, and climate, J. Geophys. Res., 2011, vol. 116, A02302. doi 10.1029/2010JA015815

    Google Scholar 

  • Luan, X., Wang, W., Burns, A., Solomon, S., Zhang, Y., Paxton, L.J., and Xu, J., Longitudinal variations of nighttime electron auroral precipitation in both the Northern and Southern hemispheres from the TIMED global ultraviolet imager, J. Geophys. Res., 2011, vol. 116, A03302. doi 10.1029/2010JA016051

    Article  Google Scholar 

  • Luan, X., Wang, W., Dou, X., Burns, A., and Yue, X., Longitudinal variations of the nighttime E layer electron density in the auroral zone, J. Geophys. Res.: Space, 2015, vol. 120, pp. 825–833.

    Article  Google Scholar 

  • Mikhailov, A.V. and Perrone, L., On the mechanism of seasonal and solar cycle NmF2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations, J. Geophys. Res., 2011, vol. 116, A03319. doi 10.1029/2010JA016122

    Article  Google Scholar 

  • Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.

    Article  Google Scholar 

  • Newell, P.T., Meng, C.-I., and Lyons, K.M., Suppression of discrete aurorae by sunlight, Nature, 1996, vol. 381, no. 766–767.

    Google Scholar 

  • Newell, P.T., Greenwald, R.A., and Ruohoniemi, J.M., The role of the ionosphere in aurora and space weather, Rev. Geophys., 2001, vol. 39, no. 2, pp137–149.

    Article  Google Scholar 

  • Newell, P.T., Sotirelis, T., and Wing, S., Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res., 2009, vol. 114, A09207. doi 10.1029/2009JA014326

    Article  Google Scholar 

  • Newell, P.T., Sotirelis, T., and Wing, S., Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 2010, vol. 115, A03216. doi 10.1029/2009JA014805

    Google Scholar 

  • Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., A statistical study of the mid-latitude NmF2 winter anomaly, Adv. Space Res., 2010, vol. 45, no. 3, pp. 374–385.

    Article  Google Scholar 

  • Ramachandran, K.M. and Tsokos, C.P., Mathematical Statistics with Applications, Oxford: Elsevier, 2009.

    Google Scholar 

  • Schunk, R.W. and Nagy, A.E., Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge: Cambridge University Press, 2009.

    Book  Google Scholar 

  • Taubenheim, J., Meteorological control of the D region, Space Sci. Rev., 1983, vol. 34, no. 4, pp. 397–411.

    Article  Google Scholar 

  • Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696.

    Google Scholar 

  • Yang, Z., Ssessanga, N., Tran, L.T., Bilitza, D., and Kenpankho, P., On improvement in representation of foE in IRI, Adv. Space Res., 2017, vol. 60, no. 2, pp. 347–356. doi 10.1016/j.asr.2016.11.008

    Article  Google Scholar 

  • Zhang, Y. and Paxton, L.J., An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, nos. 8–9, pp. 1231–1242.

    Article  Google Scholar 

  • Zhao, B., Wan, W., Liu, L., Mao, T., Ren, Z., Wang, M., and Christensen, A.B., Features of annual and semiannual variations derived from the global ionospheric maps of total electron content, Ann. Geophys., 2007, vol. 25, no. 12, pp. 2513–2527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Deminov.

Additional information

Original Russian Text © M.G. Deminov, G.F. Deminova, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 5, pp. 628–634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deminov, M.G., Deminova, G.F. Winter anomaly of the E-layer critical frequency in the nighttime auroral zone. Geomagn. Aeron. 57, 584–590 (2017). https://doi.org/10.1134/S0016793217050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217050061

Navigation