Skip to main content
Log in

Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. II. radiowave propagation

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A study of HF wave propagation in the three-dimensional inhomogeneous ionosphere has been carried out in an approximation of geometrical optics. The three-dimensional medium of radio wave propagation is considered to be inhomogeneous, absorbing, and anisotropic due to the influence of the geomagnetic field. The parameters of the medium are described by the results of calculations on the basis of the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP). The propagation of radio waves in the equatorial, middle-, and high-latitude ionosphere was studied. Comparisons of the ray trajectories, integral attenuation, deviations of the projection of radio wave trajectories onto the Earth’s surface from the great-circle arc, and the behavior of the angle between the wave phase and wave energy directions, as well as the angle between the direction of propagation and the external magnetic field obtained for quiet and disturbed conditions, have been performed. We consider a geomagnetic storm that occurred in 2011, with the main storm phase occurring on September 26, and the day after geomagnetic disturbances, September 29, as disturbed conditions in the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarante, G.M., Santamaría, M.C., Alazo, K., and Radicella, S.M., Validation of the storm model used in IRI with ionosonde data, Adv. Space Res., 2007, vol. 39, no. 5, pp. 681–686.

    Article  Google Scholar 

  • Andreev, M.Yu., Mingaleva G.I., and Mingalev, V.S., Numerical simulation of the structure of the high-latitude ionospheric F region during meridional HF propagation, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 4, pp. 487–495.

    Article  Google Scholar 

  • Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M., and Bailey, G.J., A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes, J. Geophys. Res., 2010, vol. 115, A02304. doi 10.1029/2009JA014515

    Article  Google Scholar 

  • Bilitza, D., International reference ionosphere 2000, Radio Sci., 2001, vol. 36, no. 2, pp. 261–275.

    Article  Google Scholar 

  • Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

    Google Scholar 

  • Butrimov, M.A., Kryukovskii, A.S., and Lukin, D.S., Comparison of the results of a numerical simulation of radiowave propagation using a model of the Earth’s ionosphere based on radiotomography data and the IRI model, Vestn. Ross. Nov. Univ., 2013, no. 4, pp. 7–11.

    Google Scholar 

  • Hedin, A.E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res.: Space Phys., 1991, vol. 96, no. A2, pp. 1159–1172.

    Article  Google Scholar 

  • Huang, X. and Reinisch, B.W., Real-time HFray tracing through a tilted ionosphere, Radio Sci., 2006, vol. 41, no. 5, RS5S47.

    Article  Google Scholar 

  • Huba, J.D., Joyce, G., and Fedder, J.A., Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 2000, vol. 105. doi 10.1029/2000JA000035

  • Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H., Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere–ionosphere model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res., 2012, vol. 117, A10323. doi 10.1029/2012JA017650

    Article  Google Scholar 

  • Jones, R.M. and Stephenson, J.J., A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere, Institute for Telecommunication Sciences OT Report 75–76, Washington, D.C.: U.S. Department of Commerce, 1975.

    Google Scholar 

  • Karpachev, A.T., Zhbankov, G.A., and Telegin, V.A., Distant earthly reflections on ionograms of the Intercos mos-19 satellite, Geomagn. Aeron. (Engl. Transl.), 2013a, vol. 53, no. 6, pp. 761–768.

    Article  Google Scholar 

  • Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., and Kuleshova, V.P., Statistical study of the F3 layer characteristics retrieved from Intercosmos-19 satellite data, J. Atmos. Sol.-Terr. Phys., 2013b, vol. 103. doi 10.1016/j.jastp.2013.01.010

  • Kashcheev, S.B., Koloskov, A.V., Zalizovskii, A.V., Galushko, V.G., Pikulik, I.I., Yampol’skii, Yu.M., Kurkin, V.I., Litovkin, G.I., Orlov, A.I., and Pet’ko, P.V., Experimental study of the spectral characteristics of shortwave signals on long and very long paths, Radiofiz. Radioastron., 2009, vol. 14, no. 1, pp. 12–26.

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 4, pp. 457–446.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Ionospheric effects caused by the series of geomagnetic storms of September 9–14, 2005, Geomagn. Aeron. (Engl. Transl.), 2011a, vol. 51, no. 3, pp. 364–376.

    Article  Google Scholar 

  • Klimenko, M., Klimenko, V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M., Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011b, vol. 46, no. 3, RS0D03. doi 10.1029/2010RS004590

    Article  Google Scholar 

  • Klimenko, M.V., Zhao, B., Karpachev, A.T., and Klimenko, V.V., Stratification of the low-latitude and near-equatorial F2 layer, topside ionization ledge, and F3 layer: What we know about this? A review, Int. J. Geophys., 2012a, id 938057. doi 10.1155/2012/938057

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Numerical modeling of the global ionospheric effects of storm sequence on September 9–14, 2005 comparison with IRI model, Earth, Planets Space, 2012b, vol. 64, no. 6, pp. 433–440.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I.A., Stepanov, A.E., Kotova, D.S., Vorobjev, V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and H Fradiowave propagation. I. Ionospheric effects, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 744–762.

    Article  Google Scholar 

  • Korenkov, Y.N., Klimenko, V.V., Forster, M., Bessarab, F.S., and Surotkin, V.A., Calculated and observed ionospheric parameters for a Magion 2 passage and EISCAT data on July 31, 1990, J. Geophys. Res., 1998, vol. 103, no. A7, pp. 14697–14710. doi 10.1029/98JA00210

    Article  Google Scholar 

  • Kotova, D.S., Klimenko, M.V., Klimenko, V.V., Zakharov, V.E., Ratovsky, K.G., Nosikov, I.A., and Zhao, B., Using IRI and GSM TIP model results as environment for H Fradio wave propagation model during geomagnetic storms on September 26–29, 2011, Adv. Space Res., 2015, vol. 56, pp. 2012–2029.

    Article  Google Scholar 

  • Kotova, D.S., Klimenko, M.V., Klimenko, V.V., and Zakharov, V.E., Numerical simulation of the influence of the May 2–3, 2010 geomagnetic storm on H Fradiowave propagation in the ionosphere, Radiophys. Quantum Electron., 2014, vol. 57, no. 7, pp. 467–477.

    Article  Google Scholar 

  • Kotova, D.S., Zakharov, V.E., Klimenko, M.V., and Klimenko, V.V., Development of the model of H Fradiowave propagation in the ionosphere, Russ. J. Phys. Chem. B, 2015, vol. 9, no. 6, pp. 983–991.

    Article  Google Scholar 

  • Kryukovskii, A.S., Lukin, D.S., and Rastyagaev, D.V., Simulation of the ray and caustic structure of electromagnetic fields according to ionospheric radiotomography near equatorial anomaly, Elektromagn. Volny Elektron. Sist., 2010, vol. 15, no. 8, pp. 5–11.

    Google Scholar 

  • Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., and Aponte, N., A dayside ionospheric positive storm phase driven by neutral winds, J. Geophys. Res., 2008, vol. 113, A08304. doi 10.1029/2007JA012895

    Google Scholar 

  • Millward, G.H., Muller-Wodrag, I.C.F., Aylward, A.D., Fuller-Rowell, T.J., Richmond, A.D., and Moffett, R.J., An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere–thermosphere model with coupled electrodynamics, J. Geophys. Res., 2001, vol. 106, no. A11, pp. 24733–24744. doi 10.1029/2000JA000342

    Article  Google Scholar 

  • Mingalev, V.S., Krivilev, V.N., Yevlashina, M.L., and Mingaleva, G.I., Numerical modeling of the high-latitude F-layer anomalies, Pure Appl. Geophys., 1988, vol. 127, no. 2, pp. 323–334.

    Article  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushenko, T.A., and Naumova, N.M., Global model of the thermosphere–ionosphere–protonosphere system, Pure Appl. Geophys., 1988, vol. 127, no. 2, pp. 219–254.

    Article  Google Scholar 

  • Namgaladze, A.A., Zubova, Yu.V., Namgaladze, A.N., et al., Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: A comparison of the UAM results with the ISR and NRLMSISE-00 data, Adv. Space Res., 2006, vol. 37, no. 2, pp. 380–391. doi 10.1016/j.asr.2005.04.013

    Article  Google Scholar 

  • Oinats, A.V., Ratovsky, K.G., and Kotovich, G.V., Comparison of the Irkutsk digisonde data with the IRI model predictions for quiet and disturbed geomagnetic conditions in 2003 and 2004, in XXVIII General Assembly of International Union of Radio Science (URSI), New Delhi, India, October 23–29, 2005, New Delhi, 2005, p. 156.

    Google Scholar 

  • Pavlov, A.V. and Pavlova, N.M., Comparison of modeled electron densities and electron and ion temperatures with Arecibo observations during undisturbed and geomagnetic storm periods of 7–11 September 2005, J. Geophys. Res., 2011, vol. 116, A03301. doi 10.1029/2010JA016067

    Article  Google Scholar 

  • Richmond, A.D., Ridley, E.C., and Roble, R.G., A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 1992, vol. 6, pp. 601–604.

    Article  Google Scholar 

  • Settimi, A.M., Pezzopane, M., Pietrella, M., Bianchi, C., Scotto, C., Zuccheretti, E., and Makris, J., Testing the IONORT-ISP system: A comparison between synthesized and measured oblique ionograms, Radio Sci., 2013, vol. 48, no. 2, pp. 167–179.

    Article  Google Scholar 

  • Tashchilin, A.V. and Romanova, E.B., Numerical modeling of ionospheric plasma diffusion in the dipole geomagnetic field with a transversal drift, Mat. Model., 2013, vol. 25, no. 1, pp. 3–17.

    Google Scholar 

  • Zhbankov, G.A., Karpachev, A.T., Telegin, V.A, and Tsybulya, K.G., Specific propagation of radiowaves from the Intercosmos-19 satellite in the region of the nighttime equatorial anomaly crest, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 119–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kotova.

Additional information

Original Russian Text © D.S. Kotova, M.V. Klimenko, V.V. Klimenko, V.E. Zakharov, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 3, pp. 312–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotova, D.S., Klimenko, M.V., Klimenko, V.V. et al. Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. II. radiowave propagation. Geomagn. Aeron. 57, 288–300 (2017). https://doi.org/10.1134/S0016793217030100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217030100

Navigation