Skip to main content
Log in

Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (<5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence (Bcr), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with Bcr > 80 mT, i.e. whose main metal phase is tetrataenite (Fe0.5Ni0.5). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Abreu, Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration, 1st edition (Elsevier, Amsterdam, 2018).

    Google Scholar 

  2. D. D. Badyukov, N. S. Bezaeva, P. Rochette, J. Gattacceca, J. M. Feinberg, M. Kars, R. Egli, J. Raitala, and D. M. Kuzina, “Experimental shock metamorphism of terrestrial basalts: Agglutinate-like particle formation, petrology, and magnetism”, Meteorit. Planet. Sci. 53 (1), 131–150 (2018).

    Article  Google Scholar 

  3. N. S. Bezaeva, P. Rochette, J. Gattacceca, R. A. Sadykov, V. I. Trukhin, “Pressure demagnetization of the Martian crust: ground truth from SNC meteorites”, Geophys. Res. Lett. 34, L23202 (2007).

    Article  Google Scholar 

  4. N. S. Bezaeva, J. Gattacceca, P. Rochette, R. A. Sadykov, and V. I. Trukhin, “Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa”, Phys. Earth Planet. Int. 179, 7–20 (2010).

    Article  Google Scholar 

  5. N. S. Bezaeva, N. L. Swanson-Hysell, S. M. Tikoo, D. D. Badyukov, M. Kars, R. Egli, D. A. Chareev, L. M. Fairchild, E. Khakhalova, B. E. Strauss, and A. K. Lindquist, “The effects of 10 to >160 GPa shock on the magnetic properties of basalt and diabase”, Geochem., Geophys., Geosyst. 17, 4753–4771 (2016a).

    Article  Google Scholar 

  6. N. S. Bezaeva, D. A. Chareev, P. Rochette, M. Kars, J. Gattacceca, J. M. Feinberg, R. A. Sadykov, D. M. Kuzina, and S. N. Axenov, “Magnetic characterization of non-ideal single-domain monoclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2 GPa with implications for impact demagnetization,” Phys. Earth Planet. Int. 257, 79–90 (2016b).

    Article  Google Scholar 

  7. M. Fuller, F. Rose, and P. J. Wasilewski, “Preliminary results of an experimental study of the magnetic effects of shocking lunar soil”, The Moon 9, 57–61 (1974).

    Article  Google Scholar 

  8. J. Gattacceca, C. Suavet, P. Rochette, B. P. Weiss, M. Winklhofer, M. Uehara, and J. Friedrich, “Metal phases in ordinary chondrites: magnetic hysteresis properties and implications for thermal history”, Meteorit. Planet. Sci. 49, 652–676 (2014).

    Article  Google Scholar 

  9. S. A. Gilder and M. Le Goff, “Systematic pressure enhancement of titanomagnetite magnetization”, Geophys. Res. Lett. 35, L10302 (2008).

    Article  Google Scholar 

  10. H. Kinoshita, “Studies on piezo-magnetization (III) PRM and relating phenomena”, J. Geomagn. Geoelectr. 20, 155–167 (1968).

    Article  Google Scholar 

  11. A. S. Kirichenko, A. V. Kornilov, and V. M. Pudalov, “Properties of polyethilsiloxane as a pressure-transmitting medium,” Instrum. Exp. Tech. 48 (6), 813–816 (2005).

    Article  Google Scholar 

  12. D. S. Lauretta and H. Y. Jr. McSween, Meteorites and the Early Solar System II, 1st ed. (The University of Arizona Press, Tucson, 2006).

    Google Scholar 

  13. R. J. Martin and J. S. Noel, “The influence of stress path on thermoremanent magnetization”, Geophys. Res. Lett. 15, 507–510 (1988).

    Article  Google Scholar 

  14. T. Nagata, “Main characteristics of piezo-magnetization and their qualitative interpretation”, J. Geomagn. Geoelectr. 18, 81–97 (1966).

    Article  Google Scholar 

  15. T. Nagata and H. Kinoshita, “Studies on piezo-magnetization (I). Magnetization of titaniferous magnetite under uniaxial compression”, J. Geomagn. Geoelectr. 17 (2), 121-135 (1965).

    Article  Google Scholar 

  16. T. Nagata, M. Funaki, and J. R. Dunn, “Piezomagnetization of meteorites”, Mem. Natl Inst. Polar Res., Spec. Issue 25, 251–259 (1982).

    Google Scholar 

  17. G. W. Pearce and J. A. Karson, “On pressure demagnetization,” Geophys. Res. Lett. 8, 725–728 (1981).

    Article  Google Scholar 

  18. R. A. Sadykov, N. S. Bezaeva, A. I. Kharkovskiy, P. Rochette, J. Gattacceca, and V. I. Trukhin, “Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a SQUID magnetometer”, Rev. Sci. Instr. 79, 115102 (2008).

    Article  Google Scholar 

  19. R. A. Sadykov, N. S. Bezaeva, P. Rochette, J. Gattacceca, S. N. Axenov, and V. I. Trukhin, “Nonmagnetic high pressure cell for measurements weakly magnetic rock samples up to 2 GPa in a superconducting quantum interference device magnetometer”, Proceedings of the 10 th Conference “Physical-Chemical and Petrophysical Researches in Earth’s Sciences, (Geophys. Center RAS, 2009), pp. 305–306

  20. D. Stöffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites”, Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  Google Scholar 

  21. N. Sugiura and D. W. Strangway, “Magnetic studies of meteorites”, In Meteoritics and the Early Solar System, Ed. by J. F. Kerridge and M. S. Mathews (The University of Arizona Press, Tucson, 1988), pp. 595–615.

    Google Scholar 

  22. Q. Wei and S. A. Gilder, “Ferromagnetism of iron under pressure to 21.5 GPa”, Geophys. Res. Lett. 40 (19), 5131–5136 (2013).

    Article  Google Scholar 

  23. Q. Wei, C. McCammon, and S. A. Gilder, “High-pressure phase transition of iron: a combined magnetic remanence and Mössbauer study”, Geophys. Geochem. Geosyst. 18 (12), 4646–4654 (2017).

    Article  Google Scholar 

  24. B. P. Weiss, J. Gattacceca, S. Stanley, P. Rochette and U. R. Christensen, “Paleomagnetic records of meteorites and early planetesimal differentiation”, Space Sci. Rev. 152, 341–390 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by RFBR grant no. 18-55-15014 and by CNRS PRC French program. This study was a partial contribution to research theme of Vernadsky Institute of Geochemistry and Analytical Chemistry RAS. We are grateful to MNHN (Paris, France) for the loan of meteorite samples. We thank two anonymous reviewers for their constructive and timely reviews, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Bezaeva, J. Gattacceca, P. Rochette or R. A. Sadykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezaeva, N.S., Gattacceca, J., Rochette, P. et al. Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa. Geochem. Int. 60, 421–429 (2022). https://doi.org/10.1134/S0016702922050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922050032

Keywords:

Navigation