Skip to main content
Log in

SPINMELT-2.0: Simulation of Spinel–Melt Equilibrium in Basaltic Systems under Pressures up to 15 Kbar: II. Description of the Program Package, the Topology of the Cr-spinel–Melt Model System, and Petrological Implications

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper represents an algorithmic implementation of the SPINMELT-2.0 model designed to simulate Cr-spinel–melt equilibrium, and provides a description of its petrologic options. The properties of the SPINMELT-2.0 model were studied by modeling the topology of the liquidus surface of spinel and its dependence on pressure, redox potential, and concentrations of major components (including Cr2O3 and H2O) in the melt. Reference simulations were carried out for primitive MORB tholeiite. The spinel composition is demonstrated to depend on variously (and often oppositely) acting factors. Providing an accurate estimate of a parental magma composition, the SPINMELT-2.0 program allows one to evaluate a range of P–T–fO2–H2 O parameters responsible for the composition of an original magmatic spinel. The SPINMELT program makes it possible not only to effectively correlate available independent petrological estimates but also to consciously correct them, which is particularly important when the composition of the model melts should be estimated. This is illustrated by the application of the model to data on the composition of rocks and minerals of two young volcanoes in Kamchatka: Tolbachik and Gorely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. A. Ariskin and G. S. Nikolaev, “An empirical model for the calculation of spinel–melt equilibrium in mafic igneous systems at atmospheric pressure: I. Chromian spinels,” Contrib. Mineral. Petrol. 123, 282–292 (1996).

    Article  Google Scholar 

  • C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107 (1), 27–40; Erratum: (1994) Contrib. Mineral. Petrol. 118 (1), 109 (1991).

    Article  Google Scholar 

  • A. T. Bazilevskii, “Experiments in the olivine–enstatite–Cr-spinel systems,” Geol. Rudn. Mestorozhd., no. 6, 101–105 (1968).

    Google Scholar 

  • O. A. Braitseva, I. V. Melekestsev, and V. V. Ponomareva, “Age divisions of the Holocene volcanic formations of the Tolbachik Valley,” in The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976, Ed. by S. P. Fedotov and Ye. K. Markhinin (Cambridge University Press, Cambridge, 1983), pp. 83–95.

    Google Scholar 

  • M. Gavrilenko, A. Ozerov, Ph. R. Kyle, M. J. Carr, A. Nikulin, Ch. Vidito, and L. Danyushevsky, “Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse,” Bull. Volcanol. 78 (7), #47(2016). doi 10.1007/s00445-016-1038-z

    Google Scholar 

  • J. S. Huebner, “Buffering techniques for hydrostatic systems at elevated pressures,” in Research Techniques for High Pressure and High Temperatures, Ed. by G. C. Ulmer, (Springer, Berlin–Heidelberg–New York, 1971), pp. 123–177.

    Chapter  Google Scholar 

  • T. N. Irvine, “Chromian spinel as a petrogenetic indicator. Part I. Theory,” Can. J. Earth Sci. 2 (6), 648–672 (1965).

    Article  Google Scholar 

  • S. Jakobsson and N. Oskarsson, “The system C–O in equilibrium with graphite at high pressure and temperature: an experimental study,” Geochim. Cosmochim. Acta 58(1), 9–17 (1994).

    Article  Google Scholar 

  • D. S. Korzhinskii, “Acid–base interaction of components in silicate melts and the direction of cotectic lines,” Dokl. Akad. Nauk SSSR 128 (2), 383–386 (1959).

    Google Scholar 

  • A. A. Marakushev, “Acid–alkaline properties of chemical elements and their extremes”, in Acid–Basic Properties of Chemical Elements, Minerals, Rocks, and Natural Solutions, Ed. by A. A. Marakushev and A. D. Rakcheev, (Nauka, Moscow, 1982), pp. 5–39.

    Google Scholar 

  • N. L. Mironov, and M. V. Portnyagin, “Coupling of Redox State of Mantle Melting and Copper and Sulfur Contents in Primary Magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean),” Petrology 26(2) (2018).

    Google Scholar 

  • J. Myers and H. Eugster, “The system Fe–Si–O: oxygen buffer calibrations to 1 500 K,” Contrib. Mineral. Petrol. 82, 75–90 (1983).

    Article  Google Scholar 

  • G. S. Nikolaev, A. A. Borisov, and A. A. Ariskin, “Calculation of the ferric–ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series,” Geochem. Int. 34 (8), 641–649 (1996).

    Google Scholar 

  • G. S. Nikolaev, A. A. Ariskin, G. S. Barmina, M. A. Nazarov and R. R. Almeev, “Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel,” Geochem. Int. 54 (4), 301–320 (2016).

    Article  Google Scholar 

  • G. S. Nikolaev, A. A. Ariskin, and G. S. Barmina, SPINMELT-2.0: numerical modeling of the spinel–melt quilibrium in the basaltic systems at pressures up to 15 kbar. I. Formulation, calibration, and testing of the model,” Geochem. Int. 56 (1), 24–45 (2018).

    Article  Google Scholar 

  • M. Portnyagin, S. Duggen, F. Hauff, N. Mironov, I. Bindeman, M. Thirlwall, and K. Hoernle, “Geochemistry of the Late Holocene rocks the Tolbachik volcanic field, Kamchatka: Quantitative modeling of subductionrelated open magmatic systems,” J. Volcanol. Geoterm. Res. 307, 133–155 (2015). Doi: doi 10.1016/j.jvolgeores.2015.08.015

    Article  Google Scholar 

  • S. A. Silantyev, N. S. Bortnikov, K. N. Shatagin, Ya. V. Bychkova, E. A. Krasnova, V. E. Bel’tenev, Peridotite–Basalt Association at MAR between 19°42′ and 19°59′ N: Evaluation of Petrogenetic Conditions and Material Balance during Hydrothermal Transformation of the Oceanic Crust. Petrology 23(1), 1–22 (2015).

    Article  Google Scholar 

  • A. V. Sobolev and L. V. Danyushevsky, “Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas,” J. Petrol. 35, 1183–1211 (1994).

    Article  Google Scholar 

  • A. V. Sobolev, M. V. Portnyagin, L. V Dmitriev, O. P. Tsameryan, L. V. Danyushevskii, N. N. Kononkova, N. Shimizu, and P. Robinson, “Petrology of ultramafic lavas and associated rocks of the Troodos massif, Cyprus,” Petrologiya, 1 (4), 379–412 (1993).

    Google Scholar 

  • W. R. Taylor and S. F. Foley, “Improved oxygen-buffering techniques for C–O–H fluid-saturated experiments at high pressure,” J.Geophys. Res. 94, 4146–4158 (1989).

    Article  Google Scholar 

  • Z. Wan, L. A. Coogan, and D. Canil, “Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer,” Am. Mineral. 93, 1142–1147 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Nikolaev.

Additional information

Original Russian Text © G.S. Nikolaev, A.A. Ariskin, G.S. Barmina, 2018, published in Geokhimiya, 2018, No. 2, pp. 135–146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, G.S., Ariskin, A.A. & Barmina, G.S. SPINMELT-2.0: Simulation of Spinel–Melt Equilibrium in Basaltic Systems under Pressures up to 15 Kbar: II. Description of the Program Package, the Topology of the Cr-spinel–Melt Model System, and Petrological Implications. Geochem. Int. 56, 125–135 (2018). https://doi.org/10.1134/S0016702918020052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918020052

Keywords

Navigation