Skip to main content
Log in

Formation of organic substances of humus nature and their biospheric properties

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Hypotheses of humus formation on the basis of polymerization and oxidation reactions were considered. The most popular models of several authors and the general understanding of the structural features of natural polymers were analyzed. Multivariate statistical analysis was performed for zonal factors affecting the formation of humic substances. Evolutionary changes in the understanding of the biospheric functions of humus substances were evaluated. Statistical procedures were proposed for the prediction of the physicochemical behavior of humus substances in environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. N. Aleksandrova, Organic Matter of Soils and Processes of Its Transformation (Nauka, Moscow, 1980) [in Russsian].

    Google Scholar 

  • R. V. Bagdoryanov, S. A. Ozernaya, A.-T. A. Pikhlak, and S. A. Timofeev “Radiogenic uranium-234 in humic acids of the graptolite mudstone,” Neftedobycha 1 (24), 73–89 (2007).

    Google Scholar 

  • A. Baglieri, D. Vindrola, M. Gennari, and M. Negre, “Chemical and spectroscopic characterization of insoluble and soluble humic acid fractions at different pH values,” Chem. Biol. Tech. Agr. 9 (1), 1–11 (2014).

    Google Scholar 

  • J. Barker and P. Fritz, “The occurrence and origin of methane in some groundwater flow systems,” Can. J. Earth Sci. 18, 1802–1816 (1981).

    Article  Google Scholar 

  • M. A. Barnes, W. C. Barnes, and R. M. Bustin, “Diagenesis chemistry and evolution of organic matter,” Geosci. Can. 11, 103–114 (1984).

    Google Scholar 

  • L. L. Demina, Speciation of Heavy Metal Migration in the Ocean (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  • M. I. Dergacheva, Soil Organic Matter. Statistics and Dynamics (Evidence from West Siberia) (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  • M. I. Dinu, Influence of Functional Characteristics of Humic Substances on Metal Speciation in Natural Waters (TyumGU, Tyumen, 2012) [in Russian].

    Google Scholar 

  • V. V. Dokuchaev, Theory of Natural Zones (Geografgiz, Moscow, 1948) [in Russian].

    Google Scholar 

  • D. Dudare and M. Klavins, “The interaction between humic substances and metals, depending on structure and properties of humic substances,” 4th International Conference on Environmental, Energy and Biotechnology 85, 10–15 (2000).

    Google Scholar 

  • J. H. Ephrai and B. Allard, Metal Ion Binding by Humic Substances in Modeling in Aquatic Chemistry (World, New York, 1997).

    Google Scholar 

  • M. V. Fedorkova, E. P Pakhnenko, and N. I. Sanzharova, “Chemical forms of radioactive strontium interaction with organic matter of different soil types,” Mosc. Univ., Soil. Sci. Bull., 3, 133–136 (2012).

    Article  Google Scholar 

  • W. Flaig, “Organic compounds in soil,” Soil. Sci. 1 (111), 56–68 (1971).

    Google Scholar 

  • A. Yu. Galaktionov and A. I. Karpukhin, “Content, profile distribution, and relation of heavy metals with groups and fractions of soil organic matter in the forest experimental area of GRAY–MSKhA,” Izv. Timiryazevsk. Sel’khoz. Akad., No. 3, 47–56 (2007).

    Google Scholar 

  • L. Z. Granina and E. Callender, “Elements of the iron and manganese cycles in Lake Baikal,” Geochem. Int. 45 (9), 999–1007 (2007).

    Article  Google Scholar 

  • N. Yu. Grechishcheva, I. V. Perminova, V. A. Kholodov, and S. V. Meshcheryakova, “Stabilization of oil emulsions in water by highly dispersed particles: role in selfpurification and prospects of application,” Ross. Khim. Zh. 4 (59), 34–50 (2015).

    Google Scholar 

  • E. A. Gurov, “Characteristics of IR spectra of complexes of humic-like acid of mummy samples with metals,” Sovremen. Probl. Nauki Obrazov., No. 6, 31–37 (2014).

    Google Scholar 

  • M. V. Ivanov, A. Yu. Lein, and A. S. Savvichev, “Effect of phytoplankton and microorganisms on the isotopic composition of organic carbon in the Russian Arctic seas,” Microbiology 79 (5), 567–582 (2010).

    Article  Google Scholar 

  • V. A. Kholodov, E. Y. Milanovskiy, A. I. Konstantinov, Z. N. Tyugai, N. V. Yaroslavtseva, and I. V. Perminova, “Irreversible sorption of humic substances causes a decrease in wettability of clay surfaces as measured by a sessile drop contact angle method,” J. Soils Sediments 6, 16–24 (2016).

    Google Scholar 

  • B. M. Klenov, “Humus and anthropogenic impact,” INTEREKSPO GEO-SIBIR 2 (4), 59–63 (2016).

    Google Scholar 

  • S. I. Kolesnikov, K. Sh. Kazeeva, and V. F. Val’kov, Ecological Consequences of Soil Pollution by Heavy Metals (SKHTs VSh, Rostov-on-Don, 2000) [in Russian].

    Google Scholar 

  • M. M. Kononova, Soil Organic Matter: Its Nature, Properties, and Methods of Study (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  • M. M. Kononova, “Some controversial problems of soil humus,” Izv. Akad. Nauk SSSR, Ser. Biol. 3, 364–373 (1970).

    Google Scholar 

  • D. V. Kovalevskii, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 1998).

    Google Scholar 

  • J. D. Kubicki, “Molecular modeling of humic and fulvic acid,” Am. Chem. Soc. Div. Environ. Chem. 2, 617–623 (2000).

    Google Scholar 

  • J. D. Kubicki and S. E. Apitz, “Models of natural organic matter and interactions with organic contaminants,” Org. Geochem. 30, 911–927 (1999).

    Article  Google Scholar 

  • N. A. Kulikova, I. V. Permonova, and A. V. Kudryavtsev, “A comparative study of molecular weight distribution of water-soluble humic substances, humic acids and fulvic acids extracted from sod-podzolic soils,” Moscow Univ. Soil Sci. Bull. 4 (65), 155–158 (2010).

    Article  Google Scholar 

  • A. Yu. Lein, Ye. A. Novichkov, A. E. Rybalko, and M. V. Ivanov, “Carbon isotope composition of organic matter in Holocene sediments of the White Sea as one of the indicators of sedimentation conditions,” Dokl. Earth Sci. 452 (2), 1056–1061 (2014).

    Article  Google Scholar 

  • P. N. Linnik and B. I. Nabivanets, Speciation of Metal Migration in Surface Fresh Waters (Gidrometizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  • G. A. Makharadze, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 1984) [in Russian].

    Google Scholar 

  • S. M. Manskaya and T. V. Drozdova, Geochemistry of Organic Matter (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  • S. P. Mathur and R. S. Farnham, “Geochemistry of humic substances in natural and cultivated peatlands,” Humic Substances in Soil, Sediment, and Water (Wiley, New York, 1985).

    Google Scholar 

  • M. Meaney, Trace Metal Speciation in Environmental Systems (City University, Dublin, 1996).

    Google Scholar 

  • Yu. E. Milanovsky, Soil Humic Matter as Natural Hydrophobic–Hydrophilic Compounds (GEOS, Moscow, 2009) [in Russian].

    Google Scholar 

  • T. I. Moiseenko, N. A. Gashkina, L. P. Kudryavtseva, Yu. A. Bylinyak, and S. S. Sandimirov, “Zonal features of the formation of water chemistry in small lakes in European Russia,” Water Res. 33 (2), 144–162 (2006)

    Article  Google Scholar 

  • T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Acidification of Waters: Vulnerability and Critical Loadings (URSS, Moscow, 2017) [in Russian].

    Google Scholar 

  • D. S. Nenakhov, E. S. Gasanov, and K. E. Stekol’nikov, “Spectroscopic study of composition of fulvic acids of leached chernozem,” Sorbts. Khromatograph. Prots. 9 (5), 659–664 (2009).

    Google Scholar 

  • D. S. Orlov, “Element composition and degree of oxidation of humic acids,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki 1, 5–20 (1970).

    Google Scholar 

  • D. S. Orlov, Humic Acids (Mosk. Gos. Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  • D. S. Orlov, “Kinetic theory of humification and a scheme of the possible structure of humic acids,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki 9, 5–16 (1977).

    Google Scholar 

  • D. S. Orlov, Soil Chemistry (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  • D. S. Orlov, O. N. Biryukova, and N. I Sukhanova, Organic Matter of Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  • D. S. Orlov, L. K. Sodovnikov, and I. N. Lazanovskaya, Ecology and Protection of the Biosphere during Chemical Pollution (Vysshaya Shkola, Moscow, 2002) [in Russian].

    Google Scholar 

  • M. F. Ovchinnikova, Extended Abstracts of Doctoral Dissertation in Biology (Moscow, 2007) [in Russian].

    Google Scholar 

  • I. V. Perminova, Doctoral Dissertation in Chemistry (Moscow, 2000) [in Russian].

    Google Scholar 

  • I. V. Perminova and N. N. Danchenko, “Detoxication of heavy metals, polyaromatic hydrocarbons, and pesticides by humic matters in waters and soils,” Proceedings of International Congress “Water: Ecology and Technology,” 1136–1143 (1994).

    Google Scholar 

  • L. R. Pivovarov, “On the nature of physiological activity in relation with their structure,” Humic Fertilizers. Theory and Practice of Their Application, 2, 433–443 (1962).

    Google Scholar 

  • V. V. Ponomareva and T. A. Plotnikova, Humus and Soil Formation: Methods and Results of Study (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  • A. I. Popov, Humic Substances: Properties, Structure, and Formation (St. Petersburg Gos. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  • I. A. Potapova, E. V. Burova, and P. P. Purygin, “Extraction and study of toxic and therapeutic properties of salts of humic acids and possibility of their application as a food additive,” Bashkir. Khim. Zh. 5 (19), 54–65 (2012).

    Google Scholar 

  • N. S. Prilutskaya, T. A. Korel’skaya, L. F. Popova, and V. A. Leont’eva, “IR spectroscopic study of structural–functional composition of humic acids from the soils of the Euroarctic region,” Vestn. SAFU, Ser. Estestv. Nauki Biologiya 4, 26–35 (2016).

    Google Scholar 

  • R. A. A. Puebla, C. Valenzuela-Calahorro, and J. J. Garrido, “Theoretical study of fulvic acid structure, conformation and aggregation molecular modelling approach,” Sci. Tot. Environ. 358, 243–254 (2006).

    Article  Google Scholar 

  • P. P. Purygin, I. A. Potapova, and D. V. Vorob’ev, “Humic acids: their extraction, structure, and application in biology, chemistry, and medicine,” Sekts. Aktual. Probl. Biol. Khim. Medits. 16, 25–50 (2008).

    Google Scholar 

  • N. G. Rachkova, I. I. Shuktomova, and A. I. Taskaev, “The state of natural radionuclides of uranium, radium, and thorium in soils,” Euras. Soil Sci. 43 (6), 651–658 (2010).

    Article  Google Scholar 

  • G. N. Shigbaeva, “Element composition and content of functional groups of humic substances of soils and peats of different genesis,” Vestn. Tyumen Univ. 12, 45–53 (2014).

    Google Scholar 

  • G. V. Slavinskaya and V. F. Selemnev, Fulvic Acids of Natural Waters (Voronezhskii Gos. Univ., Voronezh, 2001) [in Russian].

    Google Scholar 

  • B. S. Smolyakov and V. I. Belevantsev, “Chemical species of copper, cadmium, and lead in freshwater basins,” Khim. Int. Ust. Razvitiya 7, 575–583 (1999).

    Google Scholar 

  • D. A. Sokolov, “Determination of organic matters of pedogenic nature in soils of technogenic landscapes,” Vestn. Tomsk. Gos. Univ. Biologiya 2 (18), 17–25 (2012).

    Google Scholar 

  • R. L. Tate, Soil Organic Matter (Wileys, New York, 1987).

    Google Scholar 

  • I. V. Tyurin, Soil Organic Matter and Its Role (Mir, Moscow, 1965) [in Russian].

    Google Scholar 

  • G. M. Varshal, T. K. Velyukhanova, and I. Ya Koshcheeva, “Geochemical role of humic acids in element migration,” Humic Substances in the Biosphere (Nauka, Moscow, 1993), pp. 97–117 [in Russian].

    Google Scholar 

  • A. A. Vetrov, I. P. Semiletov, O. V. Dudarev, V. I. Peresypkin, and A. N. Charkin, “Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea,” Geochem. Int. 46 (2), 156–167 (2008).

    Article  Google Scholar 

  • G. S. Wang, S. T. Hsieh, and C. S. Hong, “Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide,” Water Res. 34 (15), 3882–3887 (2000).

    Article  Google Scholar 

  • L. I. Wassenaar, R. Aravena, P. Ertis, and J. Barker, “Isotopic composition (13C, 14C, 2H) and geochemistry of aquatic humic substances from groundwater,” Org. Geochem. 4 (15), 383–396 (1990).

    Article  Google Scholar 

  • W. Ziechmann, “Humic substances and their medical effectiveness,” 10th International Peat Congress (2), 546–554 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dinu.

Additional information

Original Russian Text © M.I. Dinu, 2017, published in Geokhimiya, 2017, No. 10, pp. 917–933.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinu, M.I. Formation of organic substances of humus nature and their biospheric properties. Geochem. Int. 55, 911–926 (2017). https://doi.org/10.1134/S0016702917100032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917100032

Keywords

Navigation