Skip to main content
Log in

Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren massif (Based on the results of measurements of intrinsic oxygen fugacity of olivine)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We present the results of electrochemical measurements of the intrinsic oxygen fugacity of olivine separates representing seven rock types from the central part and southwestern termination of the Yoko–Dovyren mafic—ultramafic massif. The \({f_{{O_2}}}\) values were determined using a high-temperature solid-electrolyte double-cell assembly developed at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. A total of 59 experiments were performed (from 7 to 16 for each sample) at the atmospheric pressure and within the temperature range of 800–1050°C at the 30–50°C increment. The results were interpreted using the calculated log \({f_{{O_2}}}\) – 1/T(K) and log \({f_{{O_2}}}\)T(°C) dependences. It was shown that the subsolidus temperature range of the rocks (below ~1050°C) is characterized by lowest intrinsic oxygen fugacity of olivine, which is 1–4 log units below the QFM buffer. For the solidus temperatures of ~1100°C, the more oxidized conditions ranging approximately from QFM to ~QFM-3 were measured. Extrapolating the log \({f_{{O_2}}}\)T°C dependences to the temperatures of the original magmas (~1200–1300°C) produces the maximum scatter in oxygen fugacities from ~QFM+2.5 to QFM-1. The estimated range of redox conditions for the Dovyren magma crystallization lies between the QFM and ~QFM-2.5 buffer equilibria. This is consistent with the complete absence of primary magmatic titanomagnetite and the presence of ilmenite in the Dovyren rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. J. Arculus and J. W. Delano, “Intrinsic oxygen fugacity measurements: techniques and results for spinels from upper mantle peridotites and megacryst assemblages,” Geochim. Cosmochim. Acta, 45, 899–913 (1981).

    Article  Google Scholar 

  • R. J. Arculus, J. W. Delano, S. Loureiro, and A. B. Kersting, “Electrochemical measurements bearing on the oxidation state of the Skaergaard Layered Intrusion,” Contrib. Mineral. Petrol. 102, 376–388 (1989).

    Article  Google Scholar 

  • A. A. Ariskin and G. S. Barmina, “COMAGMAT: development of a magma crystallization model and its petrologic applications,” Geochem. Int. 42 (Suppl. 1), S1–S157 (2004).

    Google Scholar 

  • A. A. Ariskin and L. V. Danyushevsky, “The sulfide COMAGMAT: Modeling R-factor and Cu–Ni–PGE tenors in sulfides for multiple-saturated magmas,” in 12 th International Platinum symposium, Yekaterinburg, Russia, (Yekaterinburg, 2014), Vol. 1, pp. 15–16.

    Google Scholar 

  • A. A. Ariskin, E. G. Konnikov, and E. V. Kislov, “Modeling of the equilibrium crystallization of ultramafic rocks with application to the problems of formation of phase layering in the Dovyren Pluton, Northern Baikal Region, Russia,” Geochem. Int. 41 (2), 107–129 (2003).

    Google Scholar 

  • A. A. Ariskin, G. S. Nikolaev, G. S. Barmina, K. A. Bychkov, E. G. Konnikov, L. V. Danyushevsky, E. V. Kislov, and D. A. Orsoev, “The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization,” Geochem. Int. 47 (5), 425–453 (2009a).

    Article  Google Scholar 

  • A. A. Ariskin, L. V. Danyushevsky, E. G. Konnikov, G. S. Barmina, and G. S. Nikolaev, “Application of olivine control line and COMAGMAT model for estimating the composition of primary magma of the Ioko-Dovyren layered intrusion, in Proceedings of 3rd International Conference “Ultrabasite–Basite Complexes of Fold Areas and Related Deposits, Yekaterinburg, Russia, 2009 (Yekaterinburg, 2009b), Vol. 1, pp. 57–60 [in Russian].

    Google Scholar 

  • A. A. Ariskin, L. V. Danyushevsky, A. W. McNeill, G. S. Nikolaev, and Yu. A. Kostitsyn, “The Yoko-Dovyren layered massif (Southern Siberia, Russia): fingerprints of an open magma chamber and compaction of original cumulates conjugated with sulphide percolation process, Proceedings of 12th SGA Biennial Meeting "Mineral Deposit Research for a High-Tech World” Uppsala, Sweden, 2013a) (Uppsala, Sweden, 2013a), Vol. 3, pp. 941–943.

    Google Scholar 

  • A. A. Ariskin, L. V. Danyushevsky, E. G. Konnikov, R. Maas, Yu. A. Kostitsyn, A. McNeill, S. Meffre3, G. S. Nikolaev, and E. V. Kislov, “The Dovyren intrusive complex (Northern Baikal region, Russia): isotope–geochemical markers of contamination of parental magmas and extreme enrichment of the source,” Russ. Geol. Geophys. 56 (3), 411–434 (2015).

    Article  Google Scholar 

  • A. A. Ariskin, L. V. Danyushevsky, K. A. Bychkov, A. W. McNeill, G. S. Barmina, and G. S. Nikolaev, “Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of Ni in the melt,” Econ. Geol. 108, 1983–2003 (2013b)

    Article  Google Scholar 

  • A. A. Ariskin, Yu. A. Kostitsyn, E. G. Konnikov, L. V. Danyushevsky, S. Meffre, G. S. Nikolaev, A. McNeill, E. V. Kislov, and D. A. Orsoev, “Geochronology of the Dovyren Intrusive Complex, Northwestern Baikal Area, Russia, in the Neoproterozoic,” Geochem. Int. 51 (11), 859–875 (2013).

    Article  Google Scholar 

  • A. A. Ariskin, E. V. Kislov, G. S. Nikolaev, M. Fiorentini, S. Gilbert, K. Goemann, and A. Malyshev, “Cu–Ni–PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunites based on quantitative sulfide mineralogy,” Mineral. Deposita 51 (8), 993–1011 (2016).

    Article  Google Scholar 

  • C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine-orthopyroxenespinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107 (1), 27–40 (1991).

    Article  Google Scholar 

  • S. V. Bolikhovskaya, A. A. Yaroshevskii, and E. V. Koptev-Dvornikov, “Simulation of the geochemical structure of the Ioko-Dovyren Layered Intrusion, northwestern Baikal Area,” Geochem. Int. 51 (6), 519–537 (2007).

    Article  Google Scholar 

  • V. P. Bushuev and R. S. Tarasova, Kholodninskoe Base-Metal Deposit. Report of the Kholodninskya GRP (Buryatgeologiya, Ulan-Ude, 1984) [in Russian].

    Google Scholar 

  • I. S. Chashchukhin, S. L. Votyakov, E. V. Pushkarev, E. V. Anikina, A. B. Mironov, and S. G. Uimin, “Oxythermobarometry of ultramafic rocks from the Ural Platinum Belt,” Geochem. Int. 40(8), 762–778 (2002).

    Google Scholar 

  • P. Deines, R. H. Nafziger, G. C. Ulmer, and E. Woermann, “Temperature-oxygen fugacity tables for selected gas mixtures in the system C–O–H at one atmosphere total pressure,” Bull. Earth Miner. Sci., Pennsylv. Univ. 88, (1974).

    Google Scholar 

  • R. Dohmen, S. Chakraborty, and H. W. Becker, “Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle,” Geophys. Res. Lett. 29, (2002). doi 10.1029/2002GL015480

    Google Scholar 

  • W. C. Elliott, D. E. Grandstaff, G. C. Ulmer, T. Buntin, and D. P. Gold, “An intrinsic oxygen fugacity study of platinum-carbon associations in layered intrusions,” Econ. Geol. 77 (6), 1493–1510 (1982).

    Article  Google Scholar 

  • I. S. Fomin, G. S. Nikolaev, and A. A. Ariskin, “Estimates of redox conditions and temperatures of closure of the olivine-spinel system in cumulate rocks of the Yoko-Dovyren layered intrusion,” in Proceedings of 12th SGA Biennial Meeting “Mineral Deposit Research for a High-Rech World,” Uppsala, Sweden, 2013), Vol. 3, pp. 982–984.

    Google Scholar 

  • O. Gérard and O. Jaoul, “Oxygen diffusion in San-Carlos olivine,” J. Geophys. Res. 94, 4119–4128 (1989).

    Article  Google Scholar 

  • S. A. Gurulev, Conditions of Formation of Mafic Layered Intrusions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  • S. A. Gurulev, Geology and Conditions of Formation of the Ioko-Dovyren Gabbro-Peridotite Massif (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  • J. S. Huebner and M. Sato, “The oxygen fugacity-temperature relationships of manganese oxide and nikel oxide buffers,” Am. Mineral. 55, 934–952 (1970).

    Google Scholar 

  • R. H. Hunter, “Texture development in cumulate rocks,” in Layered Intrusions, Developments in Petrology, 15, 77–101 (1996).

    Article  Google Scholar 

  • A. A. Kadik, “Evolution of Earth’s redox state during upwelling of carbon-bearing mantle,” Phys. Earth Planet. Inter. 100, 157–166 (1997).

    Article  Google Scholar 

  • A. A. Kadik, E. V. Zharkova, V. I. Kovalenko, and D. A. Ionov, “Upper-mantle redox conditions: experimental determination of oxygen fugacity of minerals from peridotite xenoliths of Shavaryn–Tsaram Volcano (Mongolia),” Geokhimiya, No. 6, 783–793 (1988).

    Google Scholar 

  • A. A. Kadik, N. V. Sobolev, E. V. Zharkova, and N. P. Pokhilenko, “Redox conditions of the formation of diamondiferous peridotite xenoliths from the Udachnaya kimberlite pipe, Yakutia,” Geokhimiya, No. 8, 1120–1135 (1989).

    Google Scholar 

  • A. B. Kersting, R. J. Arculus, J. W. Delano, and D. Loureiro, “Electrochemical measurements bearing on the oxidation state of the Skaergaard Layered Intrusion,” Contrib. Mineral. Petrol. 102, 376–388 (1989).

    Article  Google Scholar 

  • E. V. Kislov, Ioko-Dovyren Layered Massif (Buryatsk. Nauch. Ts., Ulan-Ude, 1998)

    Google Scholar 

  • E. G. Konnikov, Differentiated Precambrian Basite–Hyperbasite Complexes of Transbaikalia (Novosibirsk, Nauka, 1986) [in Russian].

    Google Scholar 

  • M. M. Manuilova and V. V. Zarubin, Precambrian Volcanogenic Rocks of Northern Transbaikalia (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  • G. S. Nikolaev, A. A. Ariskin, G. S. Barmina, M. A. Nazarov and R. R. Almeev, “Test of the Ballhaus–Berry–Green Ol–Opx–Sp Oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel,” Geochem. Int. 54 (4), 301–320 (2016).

    Article  Google Scholar 

  • H. St. C. O’Neill, “Free energies of formation of NiO, CoO, Ni2SiO4, and Co2SiO4,” Am. Mineral. 72, 280–291 (1987).

    Google Scholar 

  • E. V. Pushkarev, S. L. Votyakov, I. S. Chashchukhin, and E. V. Kislov, “Olivine–Chromspinel oxythermobarometry of ultramafic rocks of the Ioko–Dovyren layered massif,” Dokl. Earth Sci. 395 (1), 266–270 (2004).

    Google Scholar 

  • V. Pushkarev, ES. L. Votyakov, I. S. Chashchukhin, E. V. Kislov, Yu. V. Shchapov, and O. L Galakhova, Ore Cr-spinels of the Ioko–Dovyren layered massif (Northern Baikal region): composition, structure, and conditions of formation, in Yearbook-2002 (Inst Geol. Geokhim. Ural’sk. Otd. Ross. Akad. Nauk, 2003), pp. 215–223 [in Russian].

    Google Scholar 

  • F. J. Ryerson, W. B. Durham, D. J. Cherniak, and W. A. Lanford, “Oxygen diffusion in olivine–effect of oxygen fugacity and implications for creep,” J. Geophys. Res. 94, 4105–4118 (1989).

    Article  Google Scholar 

  • M. Sato, “Electrochemical geothermometry: a possible new method of geothermometry with electroconductive minerals,” Econ. Geol. 60, 812–818 (1965).

    Article  Google Scholar 

  • M. Sato, “Electrochemical measurement and control of oxygen fugacity and other gaseous fugacities with solid electrolyte sensors,” in Research Techniques for High Pressure and High Temperatures, Ed. by G. C. Ulmer (Springer-Verlag, New York, 1971), pp. 43–99.

    Chapter  Google Scholar 

  • M. Sato, “Intrinsic oxygen fugacities of iron-bearing oxide and silicate minerals under low total pressure,” GSA Memoirs 135, 289–308 (1972).

    Google Scholar 

  • M. Sato, “Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism,” Proc. Lunar Sci. Conf. 7, 1323–1344 (1976).

    Google Scholar 

  • A. G. Stepin and A. I. Vlasenko, Results of Prospecting Works within the Ioko-Dovyren and Bezymyannyi Basite–Hyperbasite massifs. Report of the Dovyren Team for 1989–1993 (Buryatgeolkom, Nizhneangarsk, 1994) [in Russian].

    Google Scholar 

  • N. D. Tolstykh, D. A. Orsoev, A. P. Krivenko, and A. E. Izokh, Noble Metal Mineralization in the Layered Massifs of the Southern Siberian Platform (Parallel’, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  • G. C. Ulmer, D. E. Grandstaff, D. Weiss, M. A. Moats, T. J. Buntin, D. P. Gold, C. J. Hatton, A. Kadik, R. A. Koseluk, and M. Rosenhauer, “The mantle redox state: an unfinished story?” Geol. Soc. Am. Sp. Pap. 215, 5–23 (1987).

    Google Scholar 

  • E. V. Zharkova and A. A. Kadik, Whether minerals have “memory” and whether the grain size of sample affects the intrinsic oxygen fugacity? Vestn. Otd. Nauk Zemle, Ross. Akad. Nauk, 27(1), 1–4 (2009).

    Google Scholar 

  • E. V. Zharkova, A. A. Kadik, and V. G. Senina, “Memory” of deep-seated minerals. Experimental determination of intrinsic oxygen fugacity of crustals,” Vestn. Otd. Nauk Zemle, Ross. Akad. Nauk, 4, NZ9001 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ariskin.

Additional information

Original Russian Text © A.A. Ariskin, I.S. Fomin, E.V. Zharkova, A.A. Kadik, G.S. Nikolaev, 2017, published in Geokhimiya, 2017, No. 7, pp. 579–593.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariskin, A.A., Fomin, I.S., Zharkova, E.V. et al. Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren massif (Based on the results of measurements of intrinsic oxygen fugacity of olivine). Geochem. Int. 55, 595–607 (2017). https://doi.org/10.1134/S0016702917070023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917070023

Keywords

Navigation