Skip to main content
Log in

Key processes determining secondary alterations in kimberlites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A variety of hypotheses have been put forward as to the nature of secondary alteration. They were tested by using the amount of insoluble SiO2 accumulated in the rocks (Q) as the index of secondary alteration degree. This parameter allows any sample to be characterized with the degree of its secondary alteration. By putting Q values together with contents of CaO and rare earth elements, features of diamond crystal size distributions within samples in most altered kimberlites, and the distribution of these parameters over kimberlite bodies, we show that secondary processes occurred when kimberlites were exposed to postmagmatic solutions: fluids containing water and carbon dioxide. Endogenous fluids rose from the bottom of pipes along narrow local zones and spread beyond them at the top, involving larger rock masses. There, they mingled with vadose and phreatic water. The basicity decreased abruptly, inducing profound changes of rock-forming minerals and alteration of diamond crystal weight distribution by recrystallization. The study invokes a great body of factual information, including hundreds and thousands of analyzes of kimberlites from Yakutian diamond pipes: Botuobinskaya, Nyur’inskaya, Maiskaya, Internatsional’naya, Mir, Aikhal, Yubileinaya, Sytykanskaya, Udachnaya-West, and Udachnaya-East.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. M. Amaryan, New Data on the Inner Structure and Origin of the Earth, Petrogenesis, and Geotecctonogenesis (Aistan, Yerevan, 1974) [in Russian].

    Google Scholar 

  • G. W. Franz and P. J. Wyllie, “Experimental studies in the system CaO–MgO–SiO2–CO2–H2O,” Ultramafic and Related Rocks, Ed. by P.J. Wyllie (John Wiley and Sons, New York, 1967), pp. 85–94.

    Google Scholar 

  • L. N. Kogarko, “The role of global fluids in the genesis of mantle heterogeneities and alkaline magmatism,” Russ. Geol. Geophys. 40 (12), 1234–1245 (2005).

    Google Scholar 

  • D. S. Korzhinskii, “Essay on metasomatic processes,” in The main Problems in the Theory of Magmatogenic Ore Deposits, Ed. by G. A. Sokolov (Akad. Nauk SSSR, Moscow, 1955), pp. 335–456.

    Google Scholar 

  • E. B. Lebedev and N. I. Khitarov, Physical Properties of Magmatic Melts (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  • V. K. Marshintsev, Vertical Zoning of the Yakutian Kimberlite Bodies (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  • L. I. Panina, N. M. Proshenkin, and E. N. Bulgakova, “Origin of the Khani Massif (Adan Shield): chemistry of melt inclusions,” Geol. Geofiz., No. 8, 50–62 (1987).

    Google Scholar 

  • L. L. Perchuk and V. I. Vaganov, “Nature of the Yakutian kimberlite,” in Petrological Problems of the Earth’s Crust and Upper Mantle, Ed. by V. A. Kukznetsov (Nauka, Novosibirsk, 1978), pp. 27–48 [in Russian].

    Google Scholar 

  • A. V. Podvysotsky, B. M. Vladimirov, S. I. Ivanov, and V. L. Kotel’nikov, “Serpentinization of kimberlites,” Dokl. Akad. Nauk. 256 (4), 946–950 (1981).

    Google Scholar 

  • A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  • I. D. Ryabchikov and A. V. Girnis, “Genesis of low-calcium kimberlite magmas,” Russ. Geol. Geophys. 46 (12), 1223–1233 (2005).

    Google Scholar 

  • E. A. Shamshina, A. I. Kryuchkov, V. V. Rogovoi, M. I. Lelyukh, V. P. Zhikhareva, Z. A. Altukhova, N. G. Zudin, and S. V. Somov, “Mineralogical features of kimberlite rocks altered by the effect of trap sill,” in Topomineralogy and Typomorphism of Minerals, Ed. by V. K. Marshitskva, (Yakutsk. Fil. SO AN SSSR, Uakutsk, 1988), pp. 47–55 [in Russian].

    Google Scholar 

  • E. A. Shamshina, Weathering Crust of the Yakutian Kimberlite Rocks (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  • C. B. Smith, M. E. McCallum, H. G. Coopersmith, and D. H. Eggler “Pertochemistry and structure of kimberlites in the Front Range and Laramie Range, Colorado-Wyoming,” Kimberlites, Diatremes and Diamonds, Ed. by F.R. Boyd and H.A.O. Meyer, (Am. Geophysical Union, Washington, 1979), pp. 179–189.

    Google Scholar 

  • E. A. Sokolova and E. M. Spiridonov, “Paragenesis of goethite and lizardite—a typical formation of metakimberlites of the zeolite facies and metaperidotite xenoliths in them,” in New Data on Minerals, Ed. by M. I. Novgorodova (EKOST, Moscow, 2006), vol. 41, pp. 86–90.

    Google Scholar 

  • S. V. Titkov, A. I. Gorshkov, N. G. Zudin, I. D. Ryabchikov, L. O. Magazina, and A. V. Sivtsev, “Microinclusions in dark gray diamond crystals of octahedral habit from Yakutian kimberlites,” Geochem. Int. 44 (11), 1121–1128 (2006).

    Article  Google Scholar 

  • A. A. Tomilenko and S. V. Kovyazin, “Primary melt and fluid inclusions in olivines from the Udachnaya–Vostochnaya pipe, Yakutia,” in Petrology of Lithosphere and Origin of Diamond. Proceedings of International Symposium Devoted to the 100th Anniversary of Academician V. S. Sobolev, Novosibirsk, Russia, 2008 (IGM SO RAN, Novosibirsk, 2008), p. 223 [in Russian].

    Google Scholar 

  • A. A. Tomilenko, S. V. Kovayzin, Y. V. Dublianskiy, and L. N. Pokhilenko, “Primary melt and inclusions in minerals from kimberlites of the Udachnaya-Vostochnaya pipe, Yakutia,” Abstracts of ECROFI-XX, Granada, Spain, 2009 (Granada, 2009)).

    Google Scholar 

  • A. V. Ukhanov and A. L. Devirts, “Meteoric origin of water that caused serpentinization of Yakutian kimberlites,” Dokl. Akad. Nauk 268 (3), 706–709 (1983).

    Google Scholar 

  • V. B. Vasilenko, N. N. Zinchuk, V. O. Krasavchikov, L. G. Kuznetsova, V. V. Khlestov, and N. I. Volkova, “Diamond potential estimation based on kimberlite major element chemistry,” J. Geochem. Explor. 76 (2), 93–112 (2002).

    Article  Google Scholar 

  • V. B. Vasilenko, N. S. Zinchuk, and L. G. Kuznetsova, Petrochemical Models of the Yakutian Diamond Deposits (Nauka, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  • V. Yu. Vasilenko, L. G. Kuznetsova, V. A. Minin, and A. V. Tolstov, “Behavior of major and rare-earth elements during the postmagmatic alteration of kimberlites,” Russ. Geol. Geophys. 53 (1), 62–76 (2012a).

    Article  Google Scholar 

  • V. Yu. Vasilenko, L. G. Kuznetsova, A. V. Tolstov, and V. A. Minin, “Evaluating the Diamondiferous Potential of Unaltered Kimberlites by the Population Models of Their Composition,” Geochem. Int. 50 (12), 988–1006 (2012b).

    Article  Google Scholar 

  • V. Yu. Vasilenko, A. V. Tolstov, L. G. Kuznetsova, and V. A. Minin, “Chemical composition and diamond potential of kimberlites having experienced secondary alteration: Nyurbinskaya pipe, East Siberia,” Geochem. Int. 47 (11), 1075–1082 (2009).

    Article  Google Scholar 

  • V. Yu. Vasilenko, A. V. Tolstov, L. G. Kuznetsova, and V. A. Minin, “Petrochemical evaluation of the diamond potentials of Yakutian kimberlite fields,” Geochem. Int. 48 (2), 346–354 (2010).

    Article  Google Scholar 

  • V. Yu. Vasilenko, A. V. Tolstov, V. A. Minin, and L. G. Kuznetsova, “Normative quartz as an indicator of the mass transfer intensity during the postmagmatic alteraion of the Botuobinskaya pipe kimberlites (Yakutia),” Russ. Geol. Geophys. 49 (12), 894–907 (2008).

    Article  Google Scholar 

  • V. Yu. Vasilenko, N. N. Zinchuk, and L. G. Kuznetsova, “Autolithic kimberlites as products of the viscous differentiation of kimberlite melts in diatremes,” Petrology 8 (5), 495–503 (2000).

    Google Scholar 

  • V. Yu. Vasilenko, N. N. Zinchuk, and L. G. Kuznetsova, “On the correlation between the compositions of mantle inclusions and petrochemical varieties of kimberlites in Yakutian diatremes,” Petrology 9 (2), 179–189 (2001).

    Google Scholar 

  • H. S. Yoder, Generation of Basaltic Magma (National Academy of Sciences, Washington, 1976).

    Google Scholar 

  • N. N. Zinchuk, D. D. Kotel’nikov, and A. I. Gorshkov, “Identification and genesis of the mixed-layer lizardite–saponite phase in a kimberlite pipe, South Africa,” Lithol. Miner. Resour. 38 (1), 74–81 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Vasilenko.

Additional information

Original Russian Text © V.B. Vasilenko, L.G. Kuznetsova, A.V. Tolstov, V.A. Minin, 2016, published in Geokhimiya, 2016, No. 4, pp. 396–406.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, V.B., Kuznetsova, L.G., Tolstov, A.V. et al. Key processes determining secondary alterations in kimberlites. Geochem. Int. 54, 369–377 (2016). https://doi.org/10.1134/S0016702916020075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916020075

Keywords

Navigation