Skip to main content
Log in

Intentions and failures. Fundamental space investigations in Russia of the last twenty years. Twenty years of fruitless efforts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This contribution provides the history of Russian planetary exploration over the past 15–20 years. Despite particular interesting ideas and accomplishments, little encouragement can be derived from those activities. Over these years, no lunar and planetary missions took place in Russia, whereas the United States, European countries, China, Japan, and India sent dozens of spacecrafts, which allowed them to make considerable progress in the exploration of the solar system. Despite hefty funding, none of three deep space astrophysical observatories of the Spektr series was launched. The main reasons for this—incompetence and lack of responsibility—are just part of an overall disturbing trend, which can be observed not only in space activities but also in many other parts of our life. Therefore, this book is not only targeted at specialists from the space sector and science, but will also be useful to many readers who are interested in the situation in their own country. The author hopes this book will help those who want to learn lessons from painful failures and provide basis for improving management practices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. V. Adushkin, A. V. Vityazev, and G. V. Pechernikova, “Development in the theory of the Earth’s origin and early evolution,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 275–296 [in Russian].

    Google Scholar 

  • Y. Amelin, A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, “Pb isotopic ages of chondrules and Ca, Al-rich inclusions,” Science 297, 1678–1683 (2002).

    Article  Google Scholar 

  • E. Belbruno and J. R. Gott, “Where did the Moon come from?“ Astronom. J. 129, 1724–1745 (2005).

    Article  Google Scholar 

  • W. Benz and A. G. W. Cameron, “Terrestrial effects of the giant impact,” in Origin of the Earth, Ed. by H. E. Newsom and J. H. Jones (Oxford Univ. Press, New York, 1990), pp. 61–67.

    Google Scholar 

  • A. Bouvier, M. Wadhwa, and P. Janney, “Pb–Pb isotope systematics in an Allende chondrule,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A104.

    Google Scholar 

  • A. D. Brandon, “The controversy on the bulk Sm/Nd of the Moon,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A111.

    Google Scholar 

  • A. G. W. Cameron, “Higher-resolution simulations of the giant impact,” in Origin of the Earth and Moon, Ed. by R. M. Canup and K. Righter (Univ. Arizona, Tucson, 2000), pp. 133–144.

    Google Scholar 

  • A. G. W. Cameron and W. Ward, “The origin of the Moon,” Sci. Proc. Lunar Conf. 7, 120–122 (1976).

    Google Scholar 

  • R. M. Canup, “Simulations of a late lunar forming impact,” Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  • R. M. Canup and L. W. Esposito, “Accretion of the Moon from an impact-generated disk,” Icarus 119, 427–446 (1996).

    Article  Google Scholar 

  • G. De Maria, G. Balducci, M. Guido, and V. Piacente, “Mass spectrometric investigation of the vaporization process of Apollo 12 lunar samples,” Proc. Lunar Sci. Conf. 2, 1367–1380 (1971).

    Google Scholar 

  • D. S. Ebel, “Model evaporation of FeO-bearing liquids: application to chondrules,” Geochim. Cosmochim. Acta 69, 3183–3193 (2005).

    Article  Google Scholar 

  • T. M. Eneev, “New accumulation model of the formation of planets and structure of the outer regions of the Solar system,” Preprint No. 166 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1979) [in Russian].

    Google Scholar 

  • E. M. Galimov, “Problems of the Moon origin,” in Main Directions in Geochemistry, Ed. by E. M. Galimov (Nauka, Moscow, 1995), pp. 8–45 [in Russian].

    Google Scholar 

  • E. M. Galimov, “On the origin of Lunar material,” Geochem. Int. 42 (7), 595–609 (2004).

    Google Scholar 

  • E. M. Galimov, “Origin of the Moon. Russian versus American concepts,” Zemlya Vselennaya 6, 3–14 (2005).

    Google Scholar 

  • E. M. Galimov, A. M. Krivtsov, A. V. Zabrodin, M. S. Legkostupov, T. M. Eneev, and Yu. I. Sidorov, “Dynamic model for the formation of the Earth–Moon system,” Geochem. Int. 43 (11), 1045–1055 (2005).

    Google Scholar 

  • L. E. Gurevich and A. I. Lebedinskii, “On the planet formation,” Izv. Akad. Nauk, Ser. Phys. 14 (6), 765 (1950).

    Google Scholar 

  • A. N. Halliday and D.-C. Lee, “Tungsten isotopes and the early development of the Earth and Moon,” Geochim. Cosmochim. Acta 63, 4157–4179 (1999).

    Article  Google Scholar 

  • A. N. Halliday and D. Porcelly, “In search of lost planets—the paleocosmochemistry of the inner solar system,” Earth Planet. Sci. Lett. 192, 545–559 (2001).

    Article  Google Scholar 

  • W. K. Hartmann and D. R. Davis, “Satellite-sized planetesimals and lunar origin,” Icarus. 24, 504–515 (1975).

    Article  Google Scholar 

  • A. Hashimoto, “Evaporation metamorphism in the early solar nebula—evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractionations of primitive materials,” Geochem. J. 17, 111–145 (1983).

    Article  Google Scholar 

  • M. Humayun and R. N. Clayton, “Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils,” Geochim. Cosmochim. Acta 59, 2115–2130 (1995).

    Article  Google Scholar 

  • B. Jacobsen, Q.-Z. Yin, F. Moynier, Y. Amelin, A. N. Krot, K. Nagashima, and I. D. Hutcheon, “Ephemeral evaporation history of the first solids in the early Solar System,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A418.

    Google Scholar 

  • M. E. Kipp and H. J. Melosh, “A numerical study of the giant impact origin of the Moon: the first half hour,” in Lunar Planet. Sci. Conf. 38, 491–492 (1997).

    Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, H. Palme, and R. Wieler, “Hafnium–tungsten chronometry of lunar differentiation,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A480.

    Google Scholar 

  • T. Kleine, M. Touboul, C. Burkhardt, and B. Bourdon, “Dating the first ~100 Ma of the solar system: from the formation of CAIs to the origin of the Moon,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A480.

    Google Scholar 

  • N. N. Kozlov and T. M. Eneev, “Numerical modeling of planet formation from a protoplanetary cloud,” Preprint No. 134 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1977) [in Russian].

    Google Scholar 

  • E. Kurahashi, N. T. Kita, H. Nagahara, and Y. Morishita, “26Al–26Mg systematics and petrological study of chondrules in CR chondrites,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A504.

    Google Scholar 

  • O. L. Kuskov and O. B. Fabrichnaya, “Constitution of the Moon: 2. composition and seismic properties of the lower mantle,” Phys. Earth Planet. Inter. 83, 197–216 (1994).

    Article  Google Scholar 

  • O. L. Kuskov and V. A. Kronrod, “Bulk composition and size of the lunar core,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 317–327 [in Russian].

    Google Scholar 

  • D.-C. Lee and A. N. Halliday, “Hafnium–tugsten chronometry and the timing of terrestrial core formation,” Nature 378, 771–774 (1995).

    Article  Google Scholar 

  • D.-C. Lee, A. N. Halliday, G. A. Snyder, and L. A. Taylor, “Age and origin of the Moon,” Science 278, 1098–1103 (1997).

    Article  Google Scholar 

  • I. Leya, W. Rainer, and A. N. Halliday, “Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf–W cosmochemistry,” Earth Planet. Sci. Lett. 175, 1–12 (2000).

    Article  Google Scholar 

  • G. Libourel, A. N. Krot, and L. Tissandier, “Role of gas–melt interaction during chondrule formation,” Earth Planet. Sci. Lett. 251, 232–240 (2006).

    Article  Google Scholar 

  • O. M. Markova, O. I. Yakovlev, G. L. Semenov, and A. N. Belov, “Some general results of experiments on the Knudsen-cell evaporation of natural melts,” Geokhimiya, No. 11, pp. 1559–1569 (1986).

    Google Scholar 

  • M. Ya. Marov, A. V. Kolesnichenko, A. B. Makalkin, V. A. Dorofeeva, I. N. Zeglina, and A. B. Chernov, “From the protosolar cloud to the planetary system: model of the evolution of a gas–dust disk,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 223–273 [in Russian].

    Google Scholar 

  • H. J. Melosh, “A new and improved equation of state for impact computations,” Lunar Planet. Sci. Conf. 31, 1903 (2000).

    Google Scholar 

  • K. Pahlevan and D. J. Stevenson, “Volatile loss following the Moon-forming giant impact,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A716.

    Google Scholar 

  • A. E. Ringwood, “Composition and origin of the Moon,” in Origin of the Moon, Ed. by W. K. Hartmann, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 673–698.

    Google Scholar 

  • A. E. Saal, E. H. Hauri, M. L. Cascio, J. A. Van Orman, M. C. Rutherford, and R. F. Cooper, “Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior,” Nature 454, 192–195 (2008).

    Article  Google Scholar 

  • V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  • M. Schönbächler, R. W. Carlson, M. F. Horan, T.D.Mock, and E. H. Hauri, “The timing of the Earth’s accretion and volatile loss: the Pd–Ag view,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A839.

    Google Scholar 

  • M. Schiller, J. A. Baker, and M. Bizzarro, “High-precision 26Al–26Mg dating of early planetesimal magmatism,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A831.

    Google Scholar 

  • R. Schoenberg, B. S. Kamber, K. D. Collerson, and O. Eugster, “New W-isotope evidence for rapid terrestrial accretion and very early core formation,” Geochim. Cosmochim. Acta 66, 3151–3160 (2002).

    Article  Google Scholar 

  • D. Stevenson, “Earth formation: combining physical models with isotopic and elemental constraints,” Geochim. Cosmochim. Acta, 15th Goldshmidt Conference Abstract Volume, A382 (2005).

    Google Scholar 

  • S. R. Taylor, “The origin of the Moon: geochemical consideration,” in Origin of the Moon, Ed. by W. K. Hartmann, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 125–144.

    Google Scholar 

  • M. Touboul, T. Kleine, B. Bourdon, H. Palme, and R. Wieler, “Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals,” Nature 450, 1206–1209 (2007).

    Article  Google Scholar 

  • S. V. Vasilyev, A. M. Krivtsov, and E. M. Galimov, “Modeling space bodies growth by accumulation of space dust material,” Proc. 32nd Summer School–Conference “Advanced Problem in Mechanics,” St. Petersburg, 2004 (St. Petersburg, 2004), pp. 425–428.

    Google Scholar 

  • H. Wänke and G. Dreibus, “Geochemical evidence for the formation of the Moon by impact induced fission of the proto-Earth,” in Origin of the Moon, Ed. by W. K. Hartmann, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 649–672 (1986).

    Google Scholar 

  • J. Wang, A. M. Davis, R. N. Clayton, and T. K. Mayeda, “Chemical and isotopic fractionation during the evaporation of the FeO–MgO–SiO2–CaO–Al2O3–TiO2–REE melt system,” Proc. Lunar Planet. Sci. Conf. 15, 1457–1458 (1994).

    Google Scholar 

  • J. Wang, A. M. Davis, R. N. Clayton, and A. Hashimoto, “Evaporation of single crystal forsterite: evaporation kinetics, magnesium isotope fractionation and implication of mass-dependent isotopic fractionation of mass-controlled reservoir,” Geochim. Cosmochim. Acta 63, 953–966 (1999).

    Article  Google Scholar 

  • G. W. Wetherill, “Accumulation of the terrestrial planets and implications concerning lunar origin,” in Origin of the Moon, Ed. by W. K. Hartman, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 519–550.

    Google Scholar 

  • Q. Yin, S. B. Jacobsen, K. Yamashita, et al. “A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites,” Nature 418, 949–952 (2002).

    Article  Google Scholar 

  • A. V. Zabrodin, E. A. Zabrodina, M. S. Legkostupov, K. V. Manukovskii, and L. A. Pliner, “Some models for the description of the Solar protoplanetary disk at the initial stage of its evolution,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 297–315 [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Galimov.

Additional information

(Abridged version of the book published by URSS in 2010; Second edition, revised and expanded, published in 2012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimov, E.M. Intentions and failures. Fundamental space investigations in Russia of the last twenty years. Twenty years of fruitless efforts. Geochem. Int. 53, 1151–1248 (2015). https://doi.org/10.1134/S0016702915130029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915130029

Keywords

Navigation