Skip to main content
Log in

Vaporization coefficients of oxides contained in the melts of Ca-Al-inclusions in chondrites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Based on the analysis of theoretical and experimental data, the following vaporization coefficients are suggested for crystalline oxides contained in Ca-Al-inclusions in chondrites: 0.66 ± 0.15 for CaO, 0.50 ± 0.20 for MgO, 1.00 ± 0.20 for FeO, 0.33 ± 0.02 for Al2O3, 0.23 ± 0.02 for TiO2, and (2.2 ± 0.3) × 10−2 for SiO2. For vaporization from liquids, the coefficients of these oxides found in the Ca-Al-inclusions are equal to one, which is confirmed by the consistency of experimental data and thermodynamic calculations for changes in the composition of multicomponent oxide melts during vaporization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. B. Alcock and M. Peleg, “Vaporization kinetics of ceramic oxides at temperatures around 2000°C.” Trans. Brit. Ceram. Soc. 66 (5), 217–232 (1967).

    Google Scholar 

  • C. M. O’D. Alexander, “Exploration of quantitative kinetic models for the evaporation of silicate melts in vacuum and in hydrogen,” Met. Planet. Sci. 36 (2), 255–283 (2001).

    Article  Google Scholar 

  • R. L. Altman, “Vaporization of magnesium oxide and its reactions with alumina,” J. Phys. Chem. 67 (2), 366–369(1963).

    Article  Google Scholar 

  • R. S. Bradley and A. D. Shellard, “The rate of evaporation of droplets. III. Vapour pressures and rates of evaporation of straight-chain paraffin hydrocarbons,” Proc. Roy. Soc. A. 198, 239–251(1949).

    Article  Google Scholar 

  • R. P. Burns, “Systematics of the evaporation coefficient Al2O3, Ga2O3, In2O3,” J. Chem. Phys. 44 (9), 3307–3319 (1966).

    Article  Google Scholar 

  • R. P. Burns, A. J. Jason, and M. G. Inghram, “Discontinuity in the rate of evaporation of aluminum oxide,” J. Chem. Phys. 40 (9), 2739–2740 (1964).

    Article  Google Scholar 

  • M. W. Chase, “NIST–JANAF themochemical tables,” J. Phys. Chem. Ref. Data Monogr. No. 9, 1951 (1998).

    Google Scholar 

  • A. Claasen and C. F. Veenemans, “Dampfdruckbestimmungen von BaO, SrO, CaO und deren Mischungen aus Verdampfungsgeschwindigkeitsmessungen,” Z. Phys. 80 (5–6), 342–355 (1933).

    Article  Google Scholar 

  • L. S. Darken and R. W. Gurry, “The system iron–oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases,” J. Amer. Chem. Soc. 68 (5), 798–816 (1946).

    Article  Google Scholar 

  • A. M. Davis, C. M. O’ D. Alexander, H. Nagahara, and F. M. Richter, “Evaporation and condensation during CAI and chondrule formation. Chondrites and the protoplanetary disk,” Ed. by A. N. Krot, E. R. D. Scott, and B. Reipurth (ASP, San Francisco: 2005), pp. 432–455

  • J. Drowart, G. De Maria, R. P. Burns, and M. G. Inghram, “Thermodynamic study of Al2O3 using a mass spectrometer,” J. Chem. Phys. 32 (5), 1366–1372 (1960).

    Article  Google Scholar 

  • J. Drowart, P. Goldfinger, D. Detry, H. Rickert, and H. Keller, “Mass spectrometric study of the equilibria in sulphur vapour generated by an electrochemical Knudsen cell,” Adv. Mass Spectrom. 4, 499–510 (1968).

    Google Scholar 

  • A. V. Fedkin, L. Grossman, and M. S. Ghiorso, “Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions, Geochim. Cosmochim. Acta 70 (2), 206–223 (2006).

    Article  Google Scholar 

  • L. P. Firsova and A. N. Nesmeyanova, “Determination of the condensation coefficients of lithium, beryllium, boron, silica, and lead oxides,” Zh. Fiz. Khim. 34 (12), 2719–2722(1960).

    Google Scholar 

  • C. M. Fu and R. P. Burns, “A mass spectrometric investigation of chemical reactions between adsorbed species on an alumina surface,” High Temp. Sci. 8 (4), 353–363 (1976).

    Google Scholar 

  • N. A. Fuchs, Evaporation and Droplet growth in Gaseous Media (Pergamon, New York, 1959).

    Google Scholar 

  • V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veits, V. A. Medvedev, G. A. Khachkuruzov, and V. S. Yungman, Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978–1982), Vols. 1–4 [in Russian].

  • L. Grossman, D. S. Ebel, S. B. Simon, A. M. Davis, F. M. Richter, and N. M. Parsad, “Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation,” Geochim. Cosmochim. Acta 64 (16), 2879–2894 (2000).

    Article  Google Scholar 

  • L. Grossman, S. B. Simon, V. K. Rai, M. H. Thiemens, I. D. Hutcheon, R. W. Williams, A. Galy, T. Ding, A. V. Fedkin, R. N. Clayton, and T. K. Mayeda, “Primordial compositions of refractory inclusions,” Geochim. Cosmochim. Acta 72 (12), 3001–3021 (2008).

    Article  Google Scholar 

  • A. Hashimoto, “Evaporation kinetics of forsterite and implications for the early solar nebula,” Nature 347 (6288), 53–55 (1990).

    Article  Google Scholar 

  • A. Hashimoto, “Evaporation metamorphism in the early solar nebula—evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractionations of primitive materials,” Geochem. J. 17(3), 111–145 (1983).

    Article  Google Scholar 

  • A. Hashimoto, B. B. Holmberg, and J. A. Wood, “Effects of melting on evaporation kinetics,” Meteoritics 24, 276 (1989).

    Google Scholar 

  • K. F. Herzfeld, “On the speed of sublimation and condensation,” J. Chem. Phys. 3 (6), 319–322 (1935).

    Article  Google Scholar 

  • D. Hirth and G. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon, Oxford, 1963).

    Google Scholar 

  • H. Inuzuka and M. Ageha, “Vapor pressure of fused silica,” J. Japan. Assoc. 50 (591), 105–106 (1942).

    Article  Google Scholar 

  • E. K. Kazenas and Yu. V. Tsvetkov, Oxide Evaporation (Nauka, Moscow, 1997). [in Russian].

    Google Scholar 

  • O. Knake, and I. N. Stranskii, “Mechanism of Evaporation,” Usp. Fiz. Nauk 68 (2), 261–305 (1959).

    Article  Google Scholar 

  • M. Knudsen, “Experimentelle Bestimmung des Druckes gesättigter Quecksilberdämpfe bei 0 und hoherren Temperaturen,” Ann. Physik (ser. 4) 29 (6), 179–183 (1909).

    Article  Google Scholar 

  • I. M. Knyazeva and V. P. Vasil’ev, “Evaporation of calcium oxide from nickel base,” Zh. Fiz. Khim. 46 (9), 2401–2403 (1972).

    Google Scholar 

  • G. A. Komlev, “Determination of saturated vapor pressure by effusion method,” Zh. Fiz. Khim. 38 (11), 2747–2748 (1964).

    Google Scholar 

  • W. Kronert and A. Boehm, “Messungen des Dampfdruckes bei freier Verdampfung an Aluminiumoxid und Magnesiumoxid,” Glas–Email–Keramo–Technik 9, 319–323 (1972).

    Google Scholar 

  • E. S. Lukin and D. N. Poluboyarinov, “Evaporation of ceramics from pure oxides at high temperatures,” Ogneupory, No. 9, 418–424 (1964).

    Google Scholar 

  • O. M. Markova, O. I. Yakovlev, G. A. Semenov, and A. N. Belov, “Some general results of experiments on the evaporation of natural melts in the Knudesen cell,” Geokhimiya, No. 11, 1559–1569 (1986).

    Google Scholar 

  • H. Nagahara, “Evaporation in equilibrium, in vacuum, and in hydrogen gas,” 24th Lunar Planet. Sci. Conf., 1045–1046 (1993).

    Google Scholar 

  • S. Nagai, K. Niwa, M. Shinmei, and T. Yokokawa, “Knudsen effusion study of silica,” J. Chem. Soc. Faraday Trans. I 69 (9), 1628–1634 (1973).

    Article  Google Scholar 

  • A. N. Nesmeyanov, Pressure of Chemical Element Vapor (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  • A. N. Nesmeyanov, N. E. Khandomirova, V. D. Vilenskii, E. A. Birin, and E. A. Borisov, “Effect of oxide films on the evaporation rate,” Zh. Fiz. Khim. 34 (7), 1425–1429(1960).

    Google Scholar 

  • K. Neumann, “Zur Theorie der Verdampfungsgeschwindigkeit fester Korper,” Naturwiss. 39 (5), 107–108 (1952).

    Article  Google Scholar 

  • M. Peleg and C. B. Alcock “The mechanism of vaporization and morphological changes of single crystals of alumina and magnesia at high temperature,” High Temp. Sci. 6 (1), 52–63 (1974).

    Google Scholar 

  • R. F. Porter, W. A. Chupka, and M. G. Inghram, “Mass spectrometric study of gaseous species in Si–SiO2 system,” J. Chem. Phys. 23 (1), 216–217 (1955).

    Article  Google Scholar 

  • G. M. Pound, “Selected values of evaporation and condensation coefficients for simple substances,” J. Phys. Chem. Ref. Data 1 (1), 135–146 (1972).

    Article  Google Scholar 

  • C. F. Powell, J. H. Oxley, and P. K. Blocher, Wapor Deposition (Wileys, New York, 1966).

    Google Scholar 

  • F. M. Richter, A. M. Davis, D. S. Ebel, and A. Hashimoto, “Elemental and isotopic fractionation of type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution,” Geochim. Cosmochim. Acta 66 (3), 521–540 (2002).

    Article  Google Scholar 

  • T. Sasamoto, H. L. Lee, and T. Sata, “Effects of porosity on vacuum-vaporization of magnesia,” J. Ceram. Soc. Japan 82 (11), 603–610 (1974).

    Article  Google Scholar 

  • T. Sata and H. L. Lee, “Vacuum vaporization in the system MgO–Cr2O3,” J. Amer. Ceram. Soc. 61 (7–8), 326–329 (1978).

    Article  Google Scholar 

  • T. Sata, “High temperature vaporization of inorganic materials,” J. Mineral. Soc. Japan 16 (1), 137–146 (1983).

    Article  Google Scholar 

  • T. Sata, T. Sasamoto, and K. Matsumoto, “High temperature vaporization of calcium oxide,” High Temp.–High Press. 14 (4), 399–408 (1982).

    Google Scholar 

  • G. A. Semenov, “Evaporation of titanium dioxide,” Izv. Akad. Nauk SSSR. Inorg. Mater. 5 (1), 67–70 (1969).

    Google Scholar 

  • S. I. Shornikov and I. Yu. Archakov, “High temperature study of the evaporation of silicon monoxide,” in High Temperature Materials Chemistry (Proc. X Intern. IUPAC Conf., Ed. by K. Hilpert, F. W. Froben, and L. Singheiser, 2, 431–434 (2000).

    Google Scholar 

  • S. I. Shornikov and O. I. Yakovlev, “A study of CAI melt composition changing during evaporation,” 41rst Lunar Planet. Sci. Conf. Abs. #1408 (2010).

    Google Scholar 

  • S. I. Shornikov and O. I. Yakovlev, “High-temperature thermodynamic study of compositional variations of the condensed phase of CAI matter during vaporization,” in Proceedings of 16th Russian Conference on Experimental Mineralogy, (Inst. Eksp. Mineral. Ross. Akad. Nauk, Chernogolovka, 2010) [in Russian].

    Google Scholar 

  • S. I. Shornikov, “Effect of redox conditions on the evaporation of oxide melts in the CaO–MgO–FeO–Al2O3–SiO2 system,” Geochem. Int. 46(7), 724–729 (2008).

    Article  Google Scholar 

  • S. I. Shornikov, “New spectrometric methods of determination of partial vaporization coefficients,” in Proceedings of 2nd International Symposium on High-temperature Mass Spectrometry, Ed. by L. S. Kudin, M. F. Butman, and A. A. Smirnov (Ivanov. Hos. Khim-Tekhnol. Univ., Ivanova, 2003), pp. 71–75 [in Russian].

    Google Scholar 

  • S. I. Shornikov, “Thermodynamic study of vaporization kinetics of melts of the CaO–MgO–Al2O3–FeO–SiO2 system,” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk 27 (1), (2009). URL: http://onznewswdcbru/publications/asempg/planet-35pdf.

  • S. I. Shornikov, “Thermodynamics of vaporization and condensation of CAI matter,” in Proceedings of 13th International Conference on “Physicochemical and Petrophysical Studies in the Earth’s Sciences (Inst. Fiz. Zemli Ross. Akad. Nauk, Moscow, 2012), pp. 299–302 [in Russian].

    Google Scholar 

  • S. I. Shornikov, I. Yu. Archakov, and M. M. Shul’ts, “Mass spectrometric study of vaporization and thermodynamic properties of silicon dioxide. I. Composition of the gas phase and partial vapor pressures of the molecular forms over silicon dioxide,” Russ. J. Gen. Chem. 68 (8), 1171–1177 (1998).

    Google Scholar 

  • S. I. Shornikov, I. Yu. Archakov, and M. M Shul’ts, “Mass spectrometric study of vaporization and thermodynamic properties of silicon. dioxide: II. Determination of partial vaporization coefficients of silicon dioxide,” Russ. J. Gen. Chem. 69(2), 187–196. (1999).

    Google Scholar 

  • S. I. Shornikov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Inst. Khim. Sil. Ross. Akad. Nauk, St. Petersburg, 1993).

    Google Scholar 

  • Srivastava R. D. and Farber, M. “The evaporation coefficient of the Al2O3 vapour species,” Proc. Indian Acad. Sci. 90 (4), 257–259 (1981).

    Google Scholar 

  • A. V. Suvorov, Thermodynamic Chemistry of the Vapor State (Khimiya, Leningrad, 1970). [in Russian].

    Google Scholar 

  • A. Takigawa, S. Tachibana, H. Nagahara, and K. Ozawa, “Anisotropic evaporation and condensation of circumstellar corundum,” 43th Lunar Planet. Sci. Conf. Abs. #1875 (2012).

    Google Scholar 

  • M. Volmer, Kinetic der Phasenbildung (Dresden–Leipzig, 1939).

    Google Scholar 

  • J. Wang, A. M. Davis, R. N. Clayton, and A. Hashimoto, “Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir,” Geochim. Cosmochim. Acta 63 (6), 953–966 (1999).

    Article  Google Scholar 

  • J. Wang, A. M. Davis, R. N. Clayton, and T. K. Mayeda, “Kinetic isotopic fractionation during the evaporation of the iron oxide from liquid state,” 25th Lunar Planet. Sci. Conf., 1459–1460 (1994).

    Google Scholar 

  • E. G. Wolff and C. B. Alcock, “The volatilization of hightemperature materials in vacuo,” Trans. Brit. Ceram. Soc. 61 (10), 667–684 (1962).

    Google Scholar 

  • O. I. Yakovlev, O. M. Markova, A. N. Belov, and G. A. Semenov, “Formation of metallic iron species during chondrite heating,” Meteoritika 46, 104–118 (1987).

    Google Scholar 

  • O. I. Yakovlev, O. M. Markova, G. A. Semenov, and A. N. Belov, “Results of experiment on vaporization of the Krymka Chondrite,” Meteoritika 43, 125–133 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Shornikov.

Additional information

Original Russian Text © S.I. Shornikov, 2015, published in Geokhimiya, 2015, No. 12, pp. 1110–1119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shornikov, S.I. Vaporization coefficients of oxides contained in the melts of Ca-Al-inclusions in chondrites. Geochem. Int. 53, 1080–1089 (2015). https://doi.org/10.1134/S0016702915100055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915100055

Keywords

Navigation