Skip to main content
Log in

Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports newly obtained data on the geochronology of the Dovyren intrusive complex and associated metarhyolites of the Inyaptuk Formation in the Synnyr Range. The data were obtained by local LA-ICPMS analysis of zircons in samples. The U-Pb age of olivine-free gabbronorite from near the roof of the Yoko-Dovyren Massif is 730 ± 6 Ma (MSWD = 1.7, n = 33, three samples) is close to the estimated age of 731 ± 4 Ma (MSWD = 1.3, n = 56, five samples) of a 200-m-thick sill beneath the pluton. These data overlap the age of recrystallized hornfels found within the massif (“charnockitoid”, 723 ± 7 Ma, MSWD = 0.12, n = 10) and a dike of sulfidated gabbronorite below the bottom of the massif (725 ± 8 Ma, MSWD = 2.0, n = 15). The estimates are also consistent with the age of albite hornfels (721 ± 6 Ma, MSWD = 0.78, n = 12), which was produced in a low-temperature contact metamorphic facies of the host rocks. The average age of the Dovyren Complex is 728.4 ± 3.4 Ma (MSWD = 1.8, n = 99) based on data on the sill, near-roof gabbronorite, and “charnockitoid”) and is roughly 55 Ma older than the estimate of 673 ± 22 Ma (Sm-Nd; [13]). The U-Pb system of zircon in two quartz metaporphyre samples from the bottom portion of the Inyaptuk volcanic formation in the northeastern part of the Yoko-Dovyren Massif turns out to be disturbed. The scatter of the data points can be explained by the effect of two discrete events. The age of the first zircon population is then 729 ± 14 Ma (MSWD = 0.74, n = 8), and that of the second population is 667 ± 14 Ma (MSWD = 1.9, n = 13). The older value pertains to intrusive rocks of Dovyren, and the age of the “rejuvenated” zircon grains corresponds to the hydrothermal-metasomatic processes, which affected the whole volcano-plutonic sequence and involved the serpentinization of the hyperbasites. This is validated by the results of Rb-Sr isotopic studies with the partial acid leaching of two serpentinized peridotite samples from the Verblyud Sill. These studies date the overprinted processes at 659 ± 5 Ma (MSWD = 1.3, n = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Konnikov, Precambrian Layered Ultrbasic-Basic Complexes in Transbaikalia (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  2. E. Yu. Rytsk, V. S. Shalaev, N. G. Rizvanova, R. Sh. Krymskii, A. F. Makeev, and G. V. Rile, “The Olokit Zone of the Baikal fold region: new isotope-geochronological and petrogeochemical data,” Geotektonics, 36(1), 24–35 (2002).

    Google Scholar 

  3. L. A. Neimark, E. Yu. Rytsk, O. A. Levchenkov, A. N. Komarov, S. Z. Yakovleva, A. A. Nemchin, I. K. Shuleshko, and S. P. Korikovskii, “Paleoproterozoic-Early Riphean rocks in the Olokit Complex: U-Pb zircon dates,” in Precambrian Geology and Geochronology of the Siberian Platform and its Surroundings (Nauka, Leningrad, 1990, pp. 206–222 [in Russian].

    Google Scholar 

  4. M. M. Manuilova and V. V. Zarubin, Precambrian Volcanogenic Rocks in the Northern Baikal Region (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  5. E. V. Kislov, Ioko-Dovyren Layered Massif (Izd. BNTs SO RAN, Ulan-Ude, 1998) [in Russian].

    Google Scholar 

  6. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De. Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  7. L. M. Heaman, A. N. LeCheminant, and R. H. Rainbird, “Nature and timing of Franklin igneous event, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia,” Earth Planet. Sci. Lett. 109, 117–131 (1992).

    Article  Google Scholar 

  8. R. E. Ernst and M. A. Hamilton, “U-Pb baddeleyite age of 725 Ma for the Dovyren intrusion, Siberia: correlation with the 723-Ma-old giant Franklin Igneous Province of northern Laurentia,” in Proceedings of Conference on “Geology of Polar Zones of the Earth” (Moscow, 2009), Vol. 2, pp. 330–332 [in Russian].

    Google Scholar 

  9. S. A. Pisarevsky, L. M. Natapov, T. V. Donskaya, D. P. Gladkochub, and V. A. Vernikovsky, “Proterozoic Siberia: a promontory of Rodinia,” Precambrian Res. 160, 66–76 (2008).

    Article  Google Scholar 

  10. A. A. Ariskin, L. V. Danyushevsky, A. McNeill, S. Meffre, R. Maas, Yu. A. Kostitsyn, G. S. Nikolaev, and E. V. Kislov, “The Dovyren intrusive complex, Northern Baikal region, Russia: isotope-geochemical markers of contamination of primary magmas and extreme source enrichment,” Geol. Geofiz. (2013) (in press).

    Google Scholar 

  11. E. K. Gerling, Yu. A. Shukolyukov, T. V. Kol’tsova, I. I. Matveeva, S. Z. Yakovleva, “Dating of basic rocks using the K/Ar method,” Geokhimiya, No. 11, 931–938 (1962).

    Google Scholar 

  12. E. V. Kislov, E. G. Konnikov, V. F. Posokhov, and V. L. Shalagin, “Isotope evidence for crustal contamination of the Ioko-Dovyren Massif,” Geol. Geofiz., No. 9, 140–144 (1989).

    Google Scholar 

  13. Yu. V. Amelin, L. A. Neymark, E. Yu. Ritsk, and A. A. Nemchin, “Enriched Nd-Sr-Pb isotopic signatures in the Dovyren layered intrusion (Eastern Siberia, Russia): evidence for contamination by ancient uppercrustal material,” Chem. Geol. 129, 39–69 (1996).

    Article  Google Scholar 

  14. R. E. Ernst, M. A. Hamilton, and U. Soderlund, “A proposed 725 Ma Dovyren-Kingash LIP of southern Siberia, and possible reconstruction link with the 725-715Ma Franklin LIP of northern Laurentia,” in Abstract Volume 35, GAC-MAC Joint Annual Meeting “Geoscience at the Edge” 2012, St. John’s, Canada (Canada, 2012).

    Google Scholar 

  15. S. A. Gurulev, Geology and generation parameters of the Ioko-Dovyren Gabbro-Peridotite Massif (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  16. S. A. Gurulev, Generation Parameters of Mafic Layered Intrusions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  17. A. A. Yaroshevskii, D. A. Ionov, Yu. V. Mironov, E. V. Koptev-Dvornikov, A. V. Abramov, and G. S. Krivoplyasov, “Petrography and geochemistry of the Ioko-Dovyren dunite-troctolite-gabbro-norite layered massif, northern Baikal region,” in Petrology and Ore Potential of Natural Rock Associations (Nauka, Moscow, 1982), pp. 86–117 [in Russian].

    Google Scholar 

  18. P. A. Balykin, G. V. Polyakov, V. I. Bognibov, and T. E. Petrova, Proterozoic Ultrabasic-Basic Complexes of the Baikal-Stanovoy Area (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  19. A. A. Ariskin, E. G. Konnikov, and E. V. Kislov, “Modeling of the equilibrium crystallization of ultramafic rocks with application to the problems of formation of phase layering in the Dovyren pluton, northern Baikal region, Russia,” Geochem. Int. 41,(2), 107–129 (2003).

    Google Scholar 

  20. A. A. Ariskin, E. G. Konnikov, L. V. Danyushevsky, E. V. Kislov, G. S. Nikolaev, D. A. Orsoev, G. S. Barmina, and K. A. Bychkov, “The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization,” Geochem. Int. 47(5), 425–453 (2009).

    Article  Google Scholar 

  21. V. P. Bushuev and R. S. Tarasova, Kholodninskoe basemetal sulfide deposit. Report of the Kholodninskaya Geological Exploration Team, 1975–1984 (Buryatgeologiya, Ulan-Ude, 1984) [in Russian].

    Google Scholar 

  22. N. A. Eliseev, Metamorphism (Nedra, Moscow, 1963) [in Russian].

    Google Scholar 

  23. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London Sp. Publ. 42, 313–345 (1989).

    Google Scholar 

  24. S. Meffre, R. J. Scott, R. A. Glen, and R. J. Squire, “Reevaluation of contact relationships between Ordovician volcanic belts and the quartz-rich turbidites of the Lachlan Orogen,” Austral. J. Earth Sci. 54, 363–383 (2007).

    Article  Google Scholar 

  25. S. Meffre, R. R. Large, R. Scott, J. Woodhead, Z. Chang, S. E. Gilbert, L. V. Danyushevsky, V. Maslennikov, and J. M. Hergt, “Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia,” Geochim. Cosmochim. Acta 72, 2377–2391 (2008).

    Article  Google Scholar 

  26. T. Geisler, R. T. Pidgeon, W. van Bronswijk, and R. Kurtz, “Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions,” Chem. Geol. 191, 141–154 (2002).

    Article  Google Scholar 

  27. M. Zhang and E. K. H. Salje, “Infrared spectroscopic analysis of zircon: radiation damage and the metamict state,” J. Phys. Condens. Matter 13, 3057–3072 (2001).

    Article  Google Scholar 

  28. S. Rios, E. K. H. Salje, M. Zhang, and R. C. Ewing, “Amorphization in zircon: evidence for direct impact damage,” J. Phys. Condens. Matter 12, 2401–2412 (2000).

    Article  Google Scholar 

  29. E. G. Konnikov, S. V. Kovyazin, A. N. Nekrasov, and A.G. Simakin, “Interaction of magmatic fluids and mantle magmas with lower crustal rocks: evidence from inclusions in the minerals of intrusions,” Geochem. Int. 43(10), 1–20 (2005).

    Google Scholar 

  30. D. P. Gladkochub, S. A. Pisarevsky, T. V. Donskaya, R. E. Ernst, M. T. D. Wingate, Ulf. Soderlund, A. M. Mazukabzov, E. V. Sklyarov, M. A. Hamilton, and J. A. Hanes, “Proterozoic mafic magmatism in Siberian Craton: an overview and implications for paleocontinental reconstruction,” Precambrian Res. 183, 660–668 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ariskin.

Additional information

Original Russian Text © A.A. Ariskin, Yu.A. Kostitsyn, E.G. Konnikov, L.V. Danyushevsky, S. Meffre, G.S. Nikolaev, A. McNeill, E.V. Kislov, D.A. Orsoev, 2013, published in Geokhimiya, 2013, Vol. 51, No. 11, pp. 957–970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariskin, A.A., Kostitsyn, Y.A., Konnikov, E.G. et al. Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic. Geochem. Int. 51, 859–875 (2013). https://doi.org/10.1134/S0016702913110025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913110025

Keywords

Navigation