Skip to main content
Log in

Physiological and biochemical aspects of interactions between insect parasitoids and their hosts

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

In the present review, available literary data on physiological and biochemical interactions between parasitoids and their hosts are analyzed. In order to achieve successful development inside or on their hosts, parasitoids widely use various strategies aimed at suppressing host immunity. Suppression agents used by parasitoids include venom and ovarian fluid components as well as symbiotic microorganisms. The influence of parasitoids on the host organism is complicated, covering many physiological functions and inducing changes of the host metabolism and behavior. The influence of ecto- and endoparasitoids on the host organism is analyzed separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew, N., Basio, M., and Kim, Y.G., “Additive Effect of Teratocyte and Calyx Fluid from Cotesia plutellae on Immunosuppression of Plutella xylostella,” Physiological Entomology 31, 341–347 (2006).

    Article  Google Scholar 

  2. Asgari, S., Hellers, M., and Schmidt, O., “Host Haemocyte Inactivation by an Insect Parasitoid: Transient Expression of a Polydnavirus Gene,” Journal of General Virology 77, 2653–2662 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Asgari, S., Zhang, G., Zareie, R., and Schmidt, O., “A Serine Proteinase Homolog Venom Protein from an Endoparasitoid Wasp Inhibits Melanization of the Host Hemolymph,” Insect Biochemistry and Molecular Biology 33, 1017–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Asgari, S. and Rivers, D.B., “Venom Proteins from Endoparasitoid Wasps and Their Role in Host-Parasite Interactions,” Annual Review of Entomology 56, 313–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Beck, M.H. and Strand, M.R., “A Novel Protein from Polydnavirus Inhibits the Insect Prophenoloxidase Activation Pathway,” Proceedings of the National Academy of Sciences of the U.S.A. 104, 19267–19272 (2007).

    Article  CAS  Google Scholar 

  6. Beckage, N.E. and Gelman, D.B., “Wasp Parasitoid Disruption of Host Development: Implications for New Biologically Based Strategies for Insect Control,” Annual Review of Entomology 49, 299–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Bell, H.A. and Weaver, R.J., “Ability to Host Regulate Determines Host Choice and Reproductive Success in the Gregarious Ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae),” Physiological Entomology 33, 62–72 (2008).

    Article  Google Scholar 

  8. Bézier, A., Annaheim, M., Herbinière, J., Wetterwald, Ch., Gyapay, G., Bernard-Samain, S., Wincker, P., Roditi, I., Heller, M., Belghazi, M., Pfister-Wilhem, R., Periquet, G., Dupuy, C., Huguet, E., Volkoff, A.-N., Lanzrein, B., and Drezen, J.-M., “Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus,” Science 13, 926–930 (2009).

    Article  CAS  Google Scholar 

  9. Bischof, C. and Ortel, J., “The Effects of Parasitism by Glyptapanteles liparidis (Braconidae: Hymenoptera) on the Hemolymph and Total Body Composition of Gypsy Moth Larvae (Lymantria dispar, Lymantriidae: Lepidoptera),” Parasitology Research 82, 687–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Burke, G.R. and Strand, M.R., “Systematic Analysis of a Wasp Parasitism Arsenal,” Molecular Ecology 23, 890–901 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cai, J., Ye, G.Y., and Hu, C., “Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a Pupal Endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): Effects of Parasitization and Venom on Host Hemocytes,” Journal of Insect Physiology 50, 315–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Carton, Y., Poirié, M., and Nappi, A., “Insect Immune Resistance to Parasitoids,” Insect Science 15, 67–87 (2008).

    Article  CAS  Google Scholar 

  13. Colinet, D., Dubuffet, A., Cazes, D., Moreau, S., Drezen, J.-M., and Poirié, M., “A Serpin from the Parasitoid Wasp Leptopilina boulardi Targets the Drosophila Phenoloxidase Cascade,” Developmental and Comparative Immunology 33, 681–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Coudron, T.A., Kelly, T.J., and Puttler, B., “Developmental Responses of Trichoplusia ni (Lepidoptera: Noctuidae) to Parasitism by the Ectoparasite Euplectrus plathypenae (Hymenoptera: Eulophidae),” Archives of Insect Biochemistry and Physiology 13, 83–94 (1990).

    Article  Google Scholar 

  15. Cuia, L., Soldevilab, A.I., and Webb, B.A., “Relationships between Polydnavirus Gene Expression and Host Range of the Parasitoid Wasp Campoletis sonorensis,” Journal of Insect Physiology 46 (10), 1397–1407 (2000).

    Article  Google Scholar 

  16. Dahlman, D.L., Rana, R.L., Schepers, E., Schepers, T., DiLuna, F.A., and Webb, B.A., “A Teratocyte Gene from a Parasitic Wasp that is Associated with Inhibition of Insect Growth and Development Inhibits Host Protein Synthesis,” Insect Molecular Biology 12, 527–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Davies, D.H. and Vinson, S.B., “Passive Evasion by Eggs of Braconid Parasitoid Cardiochiles nigriceps of Encapsulation in vitro by Hemocytes of Host Heliothis virescens. Possible Role for Fibrous Layer in Immunity,” Journal of Insect Physiology 32, 1003–1010 (1986).

    Article  Google Scholar 

  18. Dheilly, N.M., Maure, F., Ravallec, M., Galinier, R., Doyon, J., Duval, D., Leger, L., Volkoff, A.-N., Missé, D., Nidelet, S., Demolombe, V., Brodeur, J., Gourbal, B., Thomas, F., and Mitta, G., “Who Is the Puppet Master? Replication of a Parasitic Wasp- Associated Virus Correlates with Host Behaviour Manipulation,” Proceedings of the Royal Society B 282 (1803), 2014–2773 (2015).

    Article  Google Scholar 

  19. Douglas, A.E., “Multiorganismal Insects: Diversity and Function of Resident Microorganisms,” Annual Review of Entomology 60, 17–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Dover, B.A., Davies, D.H., Strand, M.R., Gray, R.S., Keeley, L.L., and Vinson, S.B., “Ecdysteroid-Titre Reduction and Developmental Arrest of Last-Instar Heliothis virescens Larvae by Calyx Fluid from the Parasitoid Campoletis sonorensis,” Journal of Insect Physiology 33 (5), 333–338 (1987).

    Article  CAS  Google Scholar 

  21. Dubovskii, I.M., Grizanova, E.V., Chertkova, E.A., Slepneva, I.A., Komarov, D.A., Vorontsova, Ya.L., and Glupov, V.V., “Generation of Reactive Oxygen Species and Activity of Antioxidants in Hemolymph of the Moth Larvae Galleria mellonella (L.) (Lepidoptera: Pyralidae) at Development of the Process of Encapsulation,” Journal of Evolutionary Biochemistry and Physiology 46 (1), 35–43 (2010).

    Article  CAS  Google Scholar 

  22. Eggleton, P. and Gaston, K.J., “Parasitoid Species and Assemblages: Convenient Definitions or Misleading Compromises?” Oikos 59, 417–421 (1990).

    Article  Google Scholar 

  23. Er, A., Sak, O., Ergin, E., Uçkan, F., and Rivers, D.B., “Venom-Induced Immunosuppression: An Overview of Hemocyte-Mediated Responses,” Psyche 2011, Article ID 276376 (2011).

    Article  Google Scholar 

  24. Erthal, M. and Tonhasca, A., “Biology and Oviposition Behavior of the Phorid Apocephalus attophilus and the Response of Its Host, the Leaf-Cutting Ant Atta laevigata,” Entomologia Experimentalis et Applicata 95, 71–75 (2000).

    Article  Google Scholar 

  25. Falabella, P., Perugino, G., Caccialupi, P., Riviello, L., Varricchio, P., Tranfaglia, A., Rossi, M., Malva, C., Graziani, F., Moracci, M., and Pennacchio, F., “A Novel Fatty Acid Binding Protein Produced by Teratocytes of the Aphid Parasitoid Aphidium ervi,” Insect Molecular Biology 14, 195–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Falabella, P., Riviello, L., De Stradis, M.L., Stigliano, C., Varricchio, P., Grimaldi, A., De Eguileor, M., Graziani, F., Gigliotti, S., and Pennacchio, F., “Aphidius ervi Teratocytes Release an Extracellular Enolase,” Insect Biochemistry and Molecular Biology 39, 801–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Fang, Q., Wang, F., Gatehouse, J.A., Gatehouse, A.M.R., Chen, X.-X., Hu, C., and Ye, G.-Y., “Venom of Parasitoid, Pteromalus puparum, Suppresses Host, Pieris rapae, Immune Promotion by Decreasing Host C-Type Lectin Gene Expression,” PLoS ONE 6 (10): e26888 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feddersen, I., Sander, K., and Schmidt, O., “Virus-Like Particles with Host Protein-Like Antigenic Determinants Protect an Insect Parasitoid from Encapsulation,” Experientia 42, 1278–1281 (1986).

    Article  CAS  Google Scholar 

  29. Ferreira, V., Molina, M.C., Valck, C., Rojas, A., Aguilar, L., Ramí rez, G., Schwaeble, W., and Ferreira, A., “Role of Calreticulin from Parasites in Its Interaction with Vertebrate Hosts,” Molecular Immunology 40, 1279–1291 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Fors, L., Markus, R., Theopold, U., and Hambäck, P.A., “Differences in Cellular Immune Competence Explain Parasitoid Resistance for Two Coleopteran Species,” PLoS ONE 9 (9): e108795 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gal, R. and Libersat, F., “A Parasitoid Wasp Manipulates the Drive for Walking of Its Cockroach Prey,” Current Biology 18, 877–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Glupov, V.V., “Resistance Mechanisms in Insects,” in Pathogens of Insects: Structural and Functional Aspects, Ed. by V.V. Glupov (Kruglyi God, Moscow, 2001), pp. 475–561 [in Russian].

    Google Scholar 

  33. Godfray, H.C.J., Parasitoids: Behavioral and Evolutionary Ecology (Princeton Univ. Press, 1994).

    Google Scholar 

  34. Grosman, A.H., Janssen, A., De Brito, E.F., Cordeiro, E.G., Colares, F., Fonseca, J.O., Lima, E.R., Pallini, A., and Sabelis, M.W., “Parasitoid Increases Survival of Its Pupae by Inducing Hosts to Fight Predators,” PLoS ONE 3 (6): e2276 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hartzer, K.L., Zhu, K.Y., and Baker, J.E., “Phenoloxidase in Larvae of Plodia interpunctella (Lepidoptera: Pyralidae): Molecular Cloning of the Proenzyme cDNA and Enzyme Activity in Larvae Paralyzed and Parasitized by Habrobracon hebetor (Hymenoptera: Braconidae),” Archives of Insect Biochemistry and Physiology 59, 67–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Haspel, G., Rosenberg, L.A., and Libersat, F., “Direct Injection of Venom by a Predatory Wasp into Cockroach Brain,” Journal of Neurobiology 56 (3), 287–292 (2003).

    Article  PubMed  Google Scholar 

  37. Hauling, T., The Activation of the Insect Immune System by Endogenous Danger Signal with Emphasis on Drosophila melanogaster (Kassel University Press, Kassel, 2012).

    Google Scholar 

  38. Herniou, E.A., Huguet, E., Thézé, J., Bézier, A., Periquet, G., and Drezen, J.-M., “When Parasitic Wasps Hijacked Viruses: Genomic and Functional Evolution of Polydnaviruses,” Philosophical Transactions of the Royal Society B 368: 20130051 (2013).

    Article  CAS  Google Scholar 

  39. Hill, J.V.G. and Brown, B.V., “New Records of the Rarely Collected Ant-Decapitating Fly Apocephalus tenuipes Borgmeier (Diptera: Phoridae),” Southeastern Naturalist 5 (2), 367–368 (2006).

    Article  Google Scholar 

  40. Hoch, G., Schafellner, C., Henn, M.W., and Schopf, A., “Alterations in Carbohydrate and Fatty Acid Levels of Lymantria dispar Larvae Caused by a Microsporidian Infection and Potential Adverse Effects on a Cooccurring Endoparasitoid, Glyptapanteles liparidis,” Archives of Insect Biochemistry and Physiology 50, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hoffman, J.A., “Innate Immunity of Insects,” Current Opinion in Immunology 7, 4–10 (1995).

    Article  Google Scholar 

  42. Hoffman, J.A., “The Immune Response of Drosophila,” Nature 426, 33–38 (2003).

    Article  CAS  Google Scholar 

  43. Hotta, M., Okuda, T., and Tanaka, T., “Cotesia kariyai Teratocytes: Growth and Development,” Journal of Insect Physiology 47, 31–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, J., Zhu, X.-X., and Fu, W.-J., “Passive Evasion of Encapsulation in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae), a Polyembryonic Parasitoid of Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae),” Journal of Insect Physiology 49, 367–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, F., Shi, M., Yang, Y.-Y., Li, J.-Y., and Chen, X.-X., “Changes in Hemocytes of Plutella xylostella after Parasitism by Diadegma semiclausum,” Archives of Insect Biochemistry and Physiology 70 (3), 177–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kinuthia, W., Li, D., Schmidt, O., and Theopold, U., “Is the Surface of Endoparasitic Wasp Eggs and Larvae Covered by a Limited Coagulation Reaction?” Journal of Insect Physiology 45, 501–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Klomp, H. and Teerink, B.J., “The Epithelium of the Gut as a Barrier against Encapsulation by Blood Cells in Three Species of Parasitoids of Bupalus piniarius (Lep., Geometridae),” Netherlands Journal of Zoology 28 (1), 132–138 (1977).

    Article  Google Scholar 

  48. Kitano, H., Wago, H., and Arakawa, T., “Possible Role of Teratocytes of the Gregarious Parasitoid, Cotesia (Apanteles) glomerata in the Suppression of Phenoloxidase Activity in the Larval Host, Pieris rapae crucivora,” Archives of Insect Biochemistry and Physiology 13, 177–185 (1990).

    Article  CAS  Google Scholar 

  49. Krautz, R., Arefin, B., and Theopold, U., “Damage Signals in the Insect Immune Response,” Frontiers in Plant Science 5, article 342 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kryukova, N.A., Dubovskiy, I.M., Chertkova, E.A., Vorontsova, Ya.L., Slepneva, I.A., and Glupov, V.V., “The Effect of Habrobracon hebetor Venom on the Activity of the Prophenoloxidase System, the Generation of Reactive Oxygen Species and Encapsulation in the Haemolymph of Galleria mellonella Larvae,” Journal of Insect Physiology 57, 796–800 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Kryukova, N.A., Chertkova, E.A., Semenova, A.D., Glazachev Yu.I., Slepneva, I.A., and Glupov, V.V., “Venom from the Ectoparasitic Wasp Habrobracon hebetor Activates the Calcium-Dependent Degradation of the Haemocytes in Galleria mellonella Larvae Haemolymph,” Archives of Insect Biochemistry and Physiology 90 (3), 117–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Lavine, M.D. and Strand, M.R., “Insect Haemocytes and Their Role in Immunity,” Insect Biochemistry and Molecular Biology 32, 1295–1309 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Libersat, F., Delago, A., and Gal, R., “Manipulation of Host Behavior by Parasitic Insects and Insect Parasites,” Annual Review of Entomology 54, 189–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, Z., Beck, M.H., and Strand, M.R., “Egf 1.5 is a Second Phenoloxidase Cascade Inhibitor Encoded by Microplitis demolitor Bracovirus,” Insect Biochemistry and Molecular Biology 40, 497–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Mabiala-Moundoungou, A.D.N., Doury, G., Eslin, P., Cherqui, A., and Prévost, G., “Deadly Venom of Asobara japonica Parasitoid Needs Ovarian Antidote to Regulate Host Physiology,” Journal of Insect Physiology 56, 35–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Maure, F., Brodeur, J., Ponlet, N., Doyon, J., Firlej, A., Elguero, E., and Thomas, F., “The Cost of a Bodyguard,” Biology Letters 7, 843–846 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maure, F., Doyon, J., Thomas, F., and Brodeur, J., “Host Behavior Manipulation as an Evolutionary Route toward Attenuation of Parasitoid Virulence,” Journal of Evolutionary Biology 27, 2871–2875 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Michalak, M., Corbett, E., Mesaeli, N., Nakamura, K., and Opas, M., “Calreticulin: One Protein, One Gene, Many Functions,” Biochemical Journal 344, 281–292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moore, E.L., Haspel, G., Libersat, F., and Adams, M.E., “Parasitoid Wasp Sting: A Cocktail of GABA, Taurine, and b-Alanine Opens Chloride Channels for Central Synaptic Block and Transient Paralysis of a Cockroach Host,” Journal of Neurobiology 66 (8), 811–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Nakamatsu, Y., Suzuki, M., Harvey, J.A., and Tanaka, T., “Regulation of the Host Nutritional Milieu by Ecto- and Endoparasitoid Venom,” in Recent Advances in the Biochemistry, Toxicity, and Mode of Action of Parasitic Wasp Venoms, Ed. by D. Rivers and J. Yoder (Research Signposts, Kerala, 2007), pp. 37–55.

    Google Scholar 

  61. Nalini, M. and Kim, Y., “A Putative Protein Translation Inhibitory Factor Encoded by Cotesia plutellae Bracovirus Suppresses Host Hemocyte-Spreading Behavior,” Journal of Insect Physiology 53, 1283–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Nappi, A.J., Vass, E., Frey, F., and Carton, Y., “Superoxide Anion Generation in Drosophila during Melanotic Encapsulation of Parasites,” European Journal of Cell Biology 68, 450–456 (1995).

    CAS  PubMed  Google Scholar 

  63. Nappi, A.J., Vass, E., Frey, F., and Carton, Y., “Nitric Oxide Involvement in Drosophila Immunity,” Nitric Oxide 4, 423–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Oliver, K.M., Moran, N.A., and Hunter, M.S., “Variation in Resistance to Parasitism in Aphids is Due to Symbionts Not Host Genotype,” Proceedings of the National Academy of Sciences of the U.S.A. 102, 12795–12800 (2005).

    Article  CAS  Google Scholar 

  65. Oliver, K.M., Campos, J., Moran, N.A., and Hunter, M.S., “Population Dynamics of Defensive Symbionts in Aphids,” Proceedings of the Royal Society B 275, 293–299 (2008).

    Article  PubMed  Google Scholar 

  66. Parkinson, N.M., Conyers, Ch., Keen, J., MacNicoll, A., Smith, I., Audsley, N., and Weaver, R., “Towards a Comprehensive View of the Primary Structure of Venom Proteins from the Parasitoid Wasp Pimpla hypochondriaca,” Insect Biochemistry and Molecular Biology 34, 565–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Pennacchio, F., Vinson, S.B., Tremblay, E., and Ostuni, A., “Alteration of Ecdysone Metabolism in Heliothis virescens (F.) (Lepidoptera: Noctuidae) Larvae Induced by Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae) Teratocytes,” Insect Biochemistry and Molecular Biology 24, 383–394 (1994).

    Article  CAS  Google Scholar 

  68. Pennacchio, F. and Strand, M.R., “Evolution of Developmental Strategies in Parasitic Hymenoptera,” Annual Review of Entomology 51, 233–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Pennacchio, F., Caccia, S., and Digilio, M.C., “Host Regulation and Nutritional Exploitation by Parasitic Wasps,” Current Opinion in Insect Science 2, 1–6 (2014).

    Article  Google Scholar 

  70. Periquet, G., Bigot, Y., and Doury, G., “Physiological and Biochemical Analysis of Factors in the Female Venom Gland and Larval Salivary Secretions of the Ectoparasitoid Wasp Eupelmus orientalis,” Journal of Insect Physiology 43 (1), 69–81 (1997).

    Article  PubMed  Google Scholar 

  71. Piek, T., “Delta-Philanthotoxin, a Semi-Irreversible Blocker of Ion-Channels,” Comparative Biochemistry and Physiology Part C 72, 311–315 (1982).

    Article  CAS  Google Scholar 

  72. Piek, T., “Neurotoxins from Venoms of the Hymenoptera: Twenty-Five Years of Research in Amsterdam,” Comparative Biochemistry and Physiology Part C 96, 223–233 (1990).

    Article  CAS  Google Scholar 

  73. Quicke, D.L.J., “Overcoming Host Immune Reaction and Physiological Interactions with Host,” in The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology (John Wiley & Sons Ltd., 2015), pp. 137–162.

    Google Scholar 

  74. Ratcliffe, N.A. and Gagen, S.J., “Studies on the in vivo Cellular Reactions of Insects: an Ultrastructural Analysis of Nodule Formation in Galleria mellonella,” Tissue and Cell 9, 73–85 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Renault, S., Petit, A., Benedet, F., Bigot, S., and Bigot, Y., “Effects of the Diadromus pulchellus Ascovirus, DpAV-4, on the Hemocytic Encapsulation Response and Capsule Melanization of the Leekmoth Pupa, Acrolepiopsis assectella,” Journal of Insect Physiology 48, 297–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Richards, E.H. and Edwards, J.P., “Parasitization of Lacanobia oleracea (Lepidoptera) by the Ectoparasitic Wasp, Eulophus pennicornis, Suppresses Haemocyte- Mediated Recognition of Non-Self and Phagocytosis,” Journal of Insect Physiology 46, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Richards, E.H. and Edwards, J.P., “Larvae of the Ectoparasitic Wasp, Eulophus pennicornis, Release Factors Which Adversely Affect Haemocytes of Their Host, Lacanobia oleracea,” Journal of Insect Physiology 48, 845–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Richards, E.H., “Salivary Secretions from the Ectoparasitic Wasp, Eulophus pennicornis Contain Hydrolases, and Kill Host Hemocytes by Apoptosis,” Archives of Insect Biochemistry and Physiology 79 (2), 61–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Rivers, D.B., Ruggiero, L., and Hayes, M., “The Ectoparasitic Wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) Differentially Affects Cells Mediating the Immune Response of Its Flesh Fly Host, Sarcophaga bullata Parker (Diptera: Sarcophagidae),” Journal of Insect Physiology 48, 1053–1064 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Rivers, D.B., “Venoms of Ectoparasitic Wasps,” in Encyclopedia of Entomology, Ed. by J. Capinera (Springer, Netherlands, 2005), pp. 2451–2453.

    Google Scholar 

  81. Rivers, D.B., Crawley, T., and Bauser, H., “Localization of Intracellular Calcium Release in Cell Injured by Venom from the Ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and Dependence of Calcium Mobilization on G-protein Activation,” Journal of Insect Physiology 51 (2), 149–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Saadat, D., Seraj, A.A., Goldansaz, S.H., and Karimzadeh, J., “Environmental and Maternal Effects on Host Selection and Parasitism Success of Bracon hebetor,” BioControl 59, 297–306 (2014).

    Article  Google Scholar 

  83. Schafellner, C., Marktl, R.C., and Schopf, A., “Inhibition of Juvenile Hormone Esterase Activity in Lymantria dispar (Lepidoptera, Lymantriidae) Larvae Parasitized by Glyptapanteles liparidis (Hymenoptera, Braconidae),” Journal of Insect Physiology 53 (8), 858–868 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Schopf, A., Nussbaumer, C., Rembold, H., and Hammock, B.D., “Influence of the Braconid Glyptapanteles liparidis on the Juvenile Hormone Titer of Its Larval Host, the Gypsy Moth, Lymantria dispar,” Archives of Insect Biochemistry and Physiology 31 (3), 337–351 (1996).

    Article  CAS  Google Scholar 

  85. Shaw, M.R. and Quicke, D.L.J., “The Biology and Early Stages of Acampsis alternipes (Nees), with Comments on the Relationships of the Sigalphinae (Hymenoptera: Braconidae),” Journal of Natural History 34, 611–628 (2000).

    Article  Google Scholar 

  86. Shaw, S.R., “Essay on the Evolution of Adult- Parasitism in Subfamily Euphorinae (Hymenoptera: Braconidae),” Proceedings of the Russian Entomological Society 75 (1), 82–95 (2004).

    Google Scholar 

  87. Shelby, K.S. and Webb, B.A., “Polydnavirus-Mediated Suppression of Insect Immunity,” Journal of Insect Physiology 45, 507–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Slepneva, I.A., Komarov, D.A., Glupov, V.V., Serebrov, V.V., and Khramtsov, V.V., “Influence of Fungal Infection on the DOPA Semiquinone and DOPA Quinone Production in Haemolymph of Galleria mellonella Larvae,” Biochemical and Biophysical Research Communications 300, 188–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Soprunov, F.F., The Molecular Basis of Parasitism (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  90. Stireman, J.O., O’Hara, J.E., and Wood, D.M., “Tachinidae: Evolution, Behavior, and Ecology,” Annual Review of Entomology 51, 525–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Strand, M.R., “Microplitis demolitor Polydnavirus Infects and Expresses in Specific Morphotypes of Pseudoplusia includens Haemocytes,” Journal of General Virology 75, 3007–3020 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Strand, M.R. and Pech, L.L., “Immunological Basis for Compatibility in Parasitoid-Host Relationships,” Annual Review of Entomology 40, 31–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Strand, M.R., “The Interactions between Polydnavirus-Carrying Parasitoids and Their Lepidopteran Hosts,” in Molecular Biology and Genetics of the Lepidoptera, Ed. by M.R. Goldsmith and F. Marec (CRC Press, Boca Raton, 2009), pp. 321–336.

    Google Scholar 

  94. Strand, M.R., “Teratocytes and Their Functions in Parasitoids,” Current Opinion in Insect Science 6, 68–73 (2014).

    Article  Google Scholar 

  95. Strand, M.R. and Burke, G.R., “Polydnaviruses: From Discovery to Current Insights,” Virology 479–480, 393–402 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Tanaka, T. and Vinson, S.B., “Depression of Prothoracic Gland Activity of Heliothis virescens by Venom and Calyx Fluids from the Parasitoid, Cardiochiles nigriceps,” Journal of Insect Physiology 37 (2), 139–144 (1991).

    Article  Google Scholar 

  97. Theopold, B.M. and Schmidt, U.O., “Evidence for Serine Protease Inhibitor Activity in the Ovarian Calyx Fluid of the Endoparasitoid Venturia canescens,” Journal of Insect Physiology 46 (9), 1275–1283 (2000).

    Article  PubMed  Google Scholar 

  98. Tillinger, N.A., Hoch, G., and Schopf, A., “Effects of Parasitoid Associated Factors of the Endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae),” European Journal of Entomology 101, 243–249 (2004).

    Article  Google Scholar 

  99. Tobias, V.I., “Parasitic Entomophagous Insects: Their Specific Biological Traits and Types of Their Parasitism,” Trudy Russkogo Entomologicheskogo Obshchestva 75 (2), 1–149 (2004).

    Google Scholar 

  100. Wang, X. and Yang, Z., “Ecological Mechanisms and Prospects for Utilization of Toxins from Parasitic Hymenopterans,” Frontiers of Agriculture in China 3 (1), 1–9 (2008).

    Article  CAS  Google Scholar 

  101. Zhang, D., Dahlman, D.L., and Gelman, D.B., “Juvenile Hormone Esterase Activity and Ecdysteroid Titer in Heliothis virescens Larvae Injected with Microplitis croceipes Teratocytes,” Archives of Insect Biochemistry and Physiology 20, 231–242 (1992).

    Article  CAS  Google Scholar 

  102. Zhang, G., Schmidt, O., and Asgari, S., “A Calreticulin- Like Protein from Endoparasitoid Venom Fluid is Involved in Host Hemocyte Inactivation,” Developmental and Comparative Immunology 30, 756–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, J.-Y., Ye, G.-Y., and Hu, C., “Venom of the Endoparasitoid Wasp Pteromalus puparum: An Overview,” Psyche 2011, Article ID 520926 (2011).

    Article  Google Scholar 

  104. Zinchenko, V.P. and Dolgacheva, L.P., Intracellular Signaling (Analytic Microscopy, Pushchino, 2003). http://campsnru.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Glupov.

Additional information

Original Russian Text © V.V. Glupov and N.A. Kryukova, 2016, published in Parazitologiya, 2016, Vol. 50, No. 3, pp. 224–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glupov, V.V., Kryukova, N.A. Physiological and biochemical aspects of interactions between insect parasitoids and their hosts. Entmol. Rev. 96, 513–524 (2016). https://doi.org/10.1134/S0013873816050018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0013873816050018

Navigation