Skip to main content
Log in

Lignin conversion to hydrogen-containing gas under the action of microwave radiation

  • Chemical Technology
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the carbon dioxide reforming of lignin in the presence of Ni-, Fe, and Ni/Fe-containing active components formed directly on the surface under microwave irradiation. The deposition of 0.1 wt % iron acetylacetonate on the lignin surface results in a sharp increase in the microwave absorption capacity at a 0.5 kW power and induces lignin conversion to hydrogen-containing gas with a degree of hydrogen recovery reaching 90 %. The maximum lignin conversion (65%) is attained in 10 min under microwave irradiation. It was shown for the first time that deposition of metals (Fe and Ni) on lignin can provide for targeted change of the selectivity of reforming to synthesis gas and the process can thus be classified as a plasma catalytic one. Using the obtained results, it is possible to minimize the amount of catalyst and to propose an efficient route for hydrogen and synthesis gas production from lignin waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowell, R.M, Pettersen, R, Han, J.S., Rowell, J.S., and Tshabalala, M.A., Handbook of Wood Chemistry and Wood Composites, Rowell R.M., Ed., Boca Raton: Taylor & Francis, 2005, pp. 9–40.

  2. Liu, W.-J., Jiang, H., and Yu, H.-Q., Green Chem., 2015, vol. 17, p. 4888.

    Article  CAS  Google Scholar 

  3. Rabinovich, M.L., Proceedings of the 2nd Nordic Wood Biorefinery Conference, Helsinki, Finland, 2009, pp. 111–120.

    Google Scholar 

  4. Thomas, Q., Hu, Chemical Modification, Properties, and Usage of Lignin, Berlin: Springer, 2002, p. 291.

    Google Scholar 

  5. Tsodikov, M.V., Perederiy, M.A., Karaceva, M.S., Maximov, Y.V., Suzdalev, I.P., Gurko, A.A., and Zhevago, N.K., Nanotechnol. Russ., 2007, vol. 1, p. 161.

    Google Scholar 

  6. Buttress, A.J., Binner, E., Yi, C., Palade, P., Kingman, S.W., Chem. Eng. J., 2016, vol. 283, pp. 215–222.

    Article  CAS  Google Scholar 

  7. Robinson, J., Dodds, C., Stavrinides, A., Kingman, S., Katrib, J., Wu, Z., Medrano, J., and Overend, R., Energy Fuels, 2015, vol. 29, p. 1701.

    Article  CAS  Google Scholar 

  8. Bu, Q., Lei, H., Wang, L., Wei, Y., Zhu, L., Zhang, X., Liu, Y., Yadavalli, G., and Tang, J., Bioresour. Technol., 2014, vol. 162, pp. 142–147.

    Article  CAS  Google Scholar 

  9. Fan, L., Chen, P., Zhang, Y., Liu, S., Liu, Y., Wang, Y., Dai, L., and Ruan, R., Bioresour. Technol., 2017, vol. 225, pp. 199–205.

    Article  CAS  Google Scholar 

  10. Liu, S., Xie, Q., Zhang, B., Cheng, Y., Liu, Y., Chen, P., and Ruan, R., Bioresour. Technol., 2016, vol. 204, pp. 164–170.

    Article  CAS  Google Scholar 

  11. Tsodikov, M.V., Perederii, M.A., Chistyakov, A.V., Konstantinov, G.I., and Martynov, B.I., Khim. Tverd. Tolpiva, 2012, vol. 1, pp. 39–47.

    Google Scholar 

  12. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Konstantinov, G.I., Bukhtenko, O.V., and Vasil’kov, A.Yu., Chem. Eng. J., 2017, vol. 309, pp. 628–637.

    Article  CAS  Google Scholar 

  13. Tsodikov, M.V., Perederii, M.A., Karaseva, M.S., Gurko, A.A., Zhevago, N.K., Maksimov, Yu.V., Suzdalev, I.P., and Marin, V.P., Naukoemk. Tekhnol., 2007, vol. 6/7, pp. 55–70.

    Google Scholar 

  14. Mushtaq, F., Mat, R., and Ani, F.N., Renew. Sustainable Energy Rev., 2014, vol. 39, pp. 555–574.

    Article  CAS  Google Scholar 

  15. Tsodikov, M.V., Konstantinov, G.I., Chistyakov, A.V., Arapova, O.V., and Perederii, M.A., Chem. Eng. J., 2016, vol. 292, pp. 315–320.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Arapova.

Additional information

Original Russian Text © O.V. Arapova, M.V. Tsodikov, A.V. Chistyakov, S.S. Kurdyumov, A.E. Gekhman, 2017, published in Doklady Akademii Nauk, 2017, Vol. 475, No. 4, pp. 405–409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapova, O.V., Tsodikov, M.V., Chistyakov, A.V. et al. Lignin conversion to hydrogen-containing gas under the action of microwave radiation. Dokl Chem 475, 184–187 (2017). https://doi.org/10.1134/S0012500817080018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500817080018

Navigation