Skip to main content
Log in

A Study of the Characteristics of a Terahertz Radiation Detector for the Solntse–Terahertz Scientific Apparatus

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper provides a brief description individual elements that can be included in the Solntse–Terahertz scientific apparatus that was designed for the first time to carry out an extra-atmospheric experiment onboard the International Space Station. Its purpose is to measure terahertz electromagnetic radiation both from the quiet Sun and during active processes on the Sun (solar flares, coronal mass ejections, etc.), which is necessary to establish the physical nature of solar activity and solar flares. The possibility is discussed of using optoacoustic converters (Golay cells) as receivers of terahertz radiation, the sensitivity, stability, and response time of which were determined in the course of preliminary laboratory studies under terrestrial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Akabane, K., Nakajima, H., Ohki, K., et al., A flare-associated thermal burst in the mm-wave region, Sol. Phys., 1973, vol. 33, pp. 431–437.

    ADS  Google Scholar 

  2. Duncan, N., Saint-Hilaire, P., Shih, A.Y., et al., First flight of the Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS) instrument, Proc. SPIE, 2016, vol. 9905, id 9905Q17.

  3. Kaufmann, P., Raullin, J.-P., de Castro, C.G.G., et al., A new solar burst spectral component emitting only in the terahertz range, Astrophys. J., 2004, vol. 603, pp. L121–L124.

    Article  ADS  Google Scholar 

  4. Kaufmann, P., Correia, E., Costa, J.E.R., et al., Solar burst with millimeter-wave emission at high frequency only, Nature, 1985, vol. 313, pp. 380–382.

    Article  ADS  Google Scholar 

  5. Kaufmann, P., Marcon, R., Abrantes, A., et al., THz photometers for solar observations from space, Exp. Astron., 2014, vol. 37, pp. 579–598.

    Article  ADS  Google Scholar 

  6. Kaufmann, P., Submillimeter/IR solar bursts from high energy electrons, AIP Conf. Proc., 1996, vol. 374, pp. 379–392.

    Article  ADS  Google Scholar 

  7. Kaufmann, P., Costa, J.E.R., Giménez de Castro, C.G., et al., The new submillimeter-wave solar telescope, in Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IEEE, 2001, pp. 439–442.

  8. Kaufmann, P., Giménez de Castro, C.G., Makhmutov, V.S., et al., Launch of solar coronal mass ejections and submillimeter pulse bursts, J. Geophys. Res., 2003, vol. 108, no. A7, 1280.

    Article  Google Scholar 

  9. Krucker, S., Giménez de Castro, C.G., Hudson H.S., et al., Solar flares at submillimeter wavelengths, Astron Astrophys. Rev., 2013, vol. 21, id 58.

  10. Luthi, T., Magun, A., and Miller, M., First observation of a solar X-class flare in the submillimeter range with KOSMA, Astron. Astrophys., 2004, vol. 415, pp. 1123–1132.

    Article  ADS  Google Scholar 

  11. Luthi, T., Ludi, A., and Magun, A., Determination of the location and effective angular size of solar flares with a 210 GHz multibeam radiometer, Astron. Astrophys., 2004, vol. 420, pp. 361–370.

    Article  ADS  Google Scholar 

  12. Makhmutov, V., Raulin, J.-P., Giménez de Castro, C., et al., Wavelet decomposition of submillimeter solar radio bursts, Sol. Phys., 2003, vol. 218, pp. 211–220.

    Article  ADS  Google Scholar 

  13. Makhmutov, V., Kurt, V., Yushkov, B.Y., et al., Spectral peculiarities of high energy X-ray radiation, gamma radiation, and submillimeter radio emission in the impulsive phase of a solar flare, Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, pp. 747–750.

    Article  Google Scholar 

  14. Marcon, R., Kaufmann, P., Fernandes, T., et al., Terahertz photometer to observe solar flares continuum, J. Infrared, Millimeter Terahertz Waves, 2012, vol. 33, pp. 192–203.

    Article  Google Scholar 

  15. Melo, A., Kornberg, M., Kaufmann, P., et al., Metal mesh resonant filters for terahertz frequencies, Appl. Opt., 2008, vol. 47, no. 32, pp. 6064–6069.

    Article  ADS  Google Scholar 

  16. Melo, A., Kaufmann, P., Kudaka, A.S., et al., A new setup for ground-based measurements of solar activity at 10 mm, Publ. Astron. Soc. Pac., 2006, vol. 118, pp. 1558–1563.

    Article  ADS  Google Scholar 

  17. Raullin, J.-P. and Pacini, A.A., Solar radio emissions, Adv. Space Res., 2005, vol. 35, no. 5, pp. 739–754.

    Article  ADS  Google Scholar 

  18. Gomon, D.A., Soboleva, V.Yu., Demchenko, P.S., et al., Tunable terahertz filters based on carbon nanotubes, Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt., 2019, no. 5, pp. 775–782.

  19. Kraus, J.D., Radio Astronomy, New York: McGraw-Hill, 1967; Moscow: Sov. Radio, 1973.

  20. Kropotov, G.I. and Kaufmann, P., Terahertz photometers for solar flare observations from space, Fotonika, 2013, no. 5, pp. 40–50.

  21. Faulkenberry, L., An Introduction to Operational Amplifiers and Linear IC Applications, Ney York: Wiley, 1982; Moscow: Mir, 1985.

  22. Horowitz, P. and Hill, W., The Art of Electronics, Cambridge: Cambridge Univ. Press, 1980; Moscow: Mir, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Philippov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, E.V., Philippov, M.V., Makhmutov, V.S. et al. A Study of the Characteristics of a Terahertz Radiation Detector for the Solntse–Terahertz Scientific Apparatus. Cosmic Res 59, 1–5 (2021). https://doi.org/10.1134/S0010952521010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521010032

Navigation