Skip to main content
Log in

Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The problem of interaction of an expanding spherical shock wave with a layer of particles is considered within the framework of the model of mechanics of continuous media with due allowance for granular pressure in the dense gas suspension. The influence of particle collisions on the shock wave expansion process is analyzed. Generation of collisional pressure and formation of shock wave structures in the gas suspension are found to be the governing factors of motion of the cloud of particles at the initial stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Fedorov, “Mixing in Wave Processes Propagating in Gas Mixtures (Review),” Fiz. Goreniya Vzryva 40 (1), 21–37 (2004) [Combust., Expl., Shock Waves 40 (1), 17–31 (2004)].

    Google Scholar 

  2. F. Zhang, D. L. Frost, P. A. Thibault, and S. B. Murray, “Explosive Dispersal of Solid Particles,” Shock Waves 10, 431–443 (2001).

    Article  ADS  MATH  Google Scholar 

  3. K. Balakrishnan, D. V. Nance, and S. Menon, “Simulation of Impulse Effects from Explosive Charges Containing Metal Particles,” Shock Waves 20, 217–239 (2010).

    Article  ADS  MATH  Google Scholar 

  4. A. L. Kuhl, J. B. Bell, and V. E. Beckner, “Heterogeneous Continuum Model of Aluminum Particle Combustion in Explosions,” Fiz. Goreniya Vzryva 46 (4), 72–89 (2010) [Combust., Explos., Shock Waves 46 (4), 433–448 (2010)].

    Google Scholar 

  5. A. L. Kuhl and K. Balakrishnan, “Gasdynamic Model of Dilute Two-Phase Combustion Fields,” Fiz. Goreniya Vzryva 48 (5), 59–76 (2012) [Combust., Explos., Shock Waves 48 (5), 544–560 (2012)].

    Google Scholar 

  6. C. A. Sturtzer, M. O. Sturtzer, B. Veyssière, and B. A. Khasainov, “Investigations of the Explosively Dispersed Glass Particles,” in Proc. 24th ICDERS, Taipei, Taiwan, July 28 to August 2, 2013, pp. 1–6.

    Google Scholar 

  7. Y. Grégoire, M.-O. Sturtzer, B. A. Khasainov, and B. Veyssière, “Cinematographic Investigations of the Explosively Driven Dispersion and Ignition of Solid Particles,” Shock Waves 24, 393–402 (2014).

    Article  ADS  Google Scholar 

  8. A. V. Fedorov and T. A. Khmel, “Description of Shock Wave Processes in Gas Suspensions Using the Molecular-Kinetic Collisional Model,” Heat Transfer Res. 43 (2), 95–107 (2012).

    Article  Google Scholar 

  9. T. A. Khmel’ and A. V. Fedorov, “Description of Dynamic Processes in Two-Phase Colliding Media with the Use of Molecular-Kinetic Approaches,” Fiz. Goreniya Vzryva 50 (2), 81–93 (2014) [Combust., Expl., Shock Waves 50 (2), 196–207 (2014)].

    Google Scholar 

  10. T. A. Khmel’ and A. V. Fedorov, “Modeling of Propagation of Shock and Detonation Waves in Dusty Media with Allowance for Particle Collisions,” Fiz. Goreniya Vzryva 50 (5), 53–62 (2014) [Combust., Expl., Shock Waves 50 (5), 547–554 (2014)].

    Google Scholar 

  11. T. A. Khmel and A. V. Fedorov, “Numerical Simulation of Dust Dispersion Using Molecular-Kinetic Model for Description of Particle-to-Particle Collisions,” J. Loss Prevent. Process Ind. 36, 223–229 (2015).

    Article  Google Scholar 

  12. A. I. Ivandaev, A. G. Kutushev, and D. A. Rudakov, “Numerical Investigation of Throwing a Powder Layer by a Compressed Gas,” Fiz. Goreniya Vzryva 31 (4), 63–70 (1995) [Combust., Expl., Shock Waves 31 (4), 459–465 (1995)].

    Google Scholar 

  13. A. V. Fedorov and T. A. Khmel, “Cellular Detonations in Bi-Dispersed Gas-Particle Mixtures,” Shock Waves 18, 277–280 (2008).

    Article  ADS  MATH  Google Scholar 

  14. B. E. Gel’fand, S. P. Medvedev, A. N. Polenov, et al., “Measurement of the Velocity of Weak Disturbances of Bulk Density in Porous Media,” Prikl. Mekh. Tekh. Fiz. 27 (1), 141–144 (1986) [Appl. Mech. Tech. Phys. 27 (1), 127–130 (1986)].

    Google Scholar 

  15. B. C. Fan, Z. H. Chen, X. H. Jiang, and H. Z. Li, “Interaction of a ShockWave with a Loose Dusty Bulk Layer,” Shock Waves 16, 179–187 (2007).

    Article  ADS  Google Scholar 

  16. A. V. Fedorov, Yu. V. Kharlamova, and T. A. Khmel’, “Numerical Study of the Transfer of Shock-Wave Loading to a Screened Flat Wall through a Layer of a Powdered Medium and a Subsequent Air Gap,” Fiz. Goreniya Vzryva 43 (1), 121–131 (2007) [Combust., Expl., Shock Waves 43 (1), 104–113 (2007)].

    Google Scholar 

  17. Yu. V. Kratova, A. V. Fedorov, and T. A. Khmel’, “Specific Features of Cellular Detonation in Polydisperse Suspensions of Aluminum Particles in a Gas,” Fiz. Goreniya Vzryva 47 (5), 85–94 (2011) [Combust., Expl., Shock Waves 47 (5), 572–580 (2011)].

    Google Scholar 

  18. Yu. V. Kratova, A. V. Fedorov, and T. A. Khmel’, “Diffraction of a Plane Detonation Wave on a Back-Facing Step in a Gas Suspension,” Fiz. Goreniya Vzryva 45 (5), 95–107 (2009) [Combust., Expl., Shock Waves 45 (5), 591–602 (2009)].

    Google Scholar 

  19. A. V. Fedorov and T. A. Khmel’, “Numerical Simulation of Detonation Initiation with a Shock Wave Entering a Cloud of Aluminum Particles,” Fiz. Goreniya Vzryva 38 (1), 114–122 (2002) [Combust., Expl., Shock Waves 38 (1), 101–108 (2002)].

    Google Scholar 

  20. V. F. Kuropatenko, “Equation of State of Detonation Products of Condensed HEs,” in Numerical Methods of Mechanics of Continuous Media (collected scientific papers), Vol. 8, No. 6 (1977), pp. 68–71.

  21. R. Menikoff, “JWL Equation of State” Report No. LAUR- 15-29536 (Los Alamos Nat. Lab., 2015).

    Book  Google Scholar 

  22. Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow 2003, Vol. 1) [in Russian].

  23. L. D. Landau, “On Shock Waves at Far Distances from the Place of Their Emergence,” Prikl. Mat. Mekh. IX (4), 286–292 (1945).

    Google Scholar 

  24. A. V. Fedorov, E. V. Tetenov, and B. Veyssiere, “Ignition of a Suspension of Metal Particles with an Actual Explosion. I. Statement of the Problem and Solution in a Self-Modeling Approximation,” Fiz. Goreniya Vzryva 27 (5), 16–21 (1995) [Combust., Expl., Shock Waves 27 (5), 527–531 (1995)].

    Google Scholar 

  25. A. V. Fedorov, E. V. Tetenov, and B. Veyssiere, “Ignition of a Suspension of Metal Particles with an Actual Explosion. I. Unidimensional Nonsteady-State Approximation,” Fiz. Goreniya Vzryva 27 (5), 22–28 (1995) [Combust., Expl., Shock Waves 27 (5), 532–538 (1995)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khmel’.

Additional information

Original Russian Text © T.A. Khmel’, A.V. Fedorov.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 4, pp. 84–93, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmel’, T.A., Fedorov, A.V. Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension. Combust Explos Shock Waves 53, 444–452 (2017). https://doi.org/10.1134/S0010508217040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217040086

Keywords

Navigation