Skip to main content
Log in

Rayleigh–Benard convection in a chemically active gas in the chemical equilibrium state

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The Rayleigh–Benard convection in a chemically active gas in the chemical equilibrium state is numerically studied in the Boussinesq approximation. A flat layer with isothermal horizontal boundaries free from shear stresses is considered. Thermodynamic parameters of the gas (hydrogen–oxygen mixture) are calculated by the previously proposed model of chemical equilibrium. It is shown that the allowance for recombination and dissociation processes leads to the emergence of an additional factor at the Rayleigh number. An expression for the growth rate of infinitesimal perturbations and a relation for the critical Rayleigh number as a function of temperature are derived. It is found that the neutral curves consist of the upper (instability due to heating from below) and lower (instability due to heating from above) branches. Results calculated for a nonlinear steady mode are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972) [in Russian].

    MATH  Google Scholar 

  2. I. B. Palymskiy, Turbulent Rayleigh–Benard Convection. Numerical Method and Calculated Results (LAP, Germany, 2011).

    Google Scholar 

  3. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of Heat and Mass Transfer (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  4. I. B. Palymskiy, “Linear and Nonlinear Analysis of the Numerical Method of Calculating Convective Flows,” Sib. Zh. Vychisl. Mat. 7 (2), 143–163 (2004).

    Google Scholar 

  5. Yu. A. Nikolaev, “Model of the Kinetics of Chemical Reactions at High Temperatures,” Fiz. Goreniya Vzryva 14 (4), 73–76 (1978) [Combust., Expl., Shock Waves 14 (4), 468–471 (1978)].

    Google Scholar 

  6. Yu. A. Nikolaev and P. A. Fomin, “Analysis of Equilibrium Flows of Chemically Reacting Gases,” Fiz. Goreniya Vzryva 18 (1), 66–72 (1982) [Combust., Expl., Shock Waves 18 (1), 53–58 (1982)].

    Google Scholar 

  7. Yu. A. Nikolaev and P. A. Fomin, “Approximate Equation of Kinetics in Heterogeneous Systems of the Gas–Condensed-Phase Type,” Fiz. Goreniya Vzryva 19 (6), 49–58 (1983) [Combust., Expl., ShockWaves 19 (6), 737–745 (1983)].

    ADS  Google Scholar 

  8. Yu. A. Nikolaev and D. V. Zak, “Agreement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics,” Fiz. Goreniya Vzryva 24 (4), 87–90 (1988) [Combust., Expl., Shock Waves 24 (4), 461–463 (1988)].

    ADS  Google Scholar 

  9. P. A. Fomin and A. V. Trotsyuk, “An Approximate Calculation of the Isentrope of a Gas in Chemical Equilibrium,” Fiz. Goreniya Vzryva 31 (4), 59–62 (1995) [Combust., Expl., Shock Waves 31 (4), 455–458 (1995)].

    Google Scholar 

  10. I. Palymskiy, P. A. Fomin, and H. Hieronymus, “Rayleigh–Benard Convection in Chemical Equilibrium Gas,” Prog. Comput. Heat Mass Transfer 1, 116–122 (2005) [in Proc. of the Fourth Int. Conf. on Computational Heat and Mass Transfer (ICCHMT’05), Paris, France, May 17–20, 2005].

    MATH  Google Scholar 

  11. I. B. Palymskiy, P. A. Fomin, and H. Hieronymus, “Rayleigh–Benard Convection in a Gas with Chemical Reactions,” Sib. Zh. Vychisl. Mat. 10 (4), 371–383 (2007).

    MATH  Google Scholar 

  12. I. Palymskiy, P. A. Fomin, and H. Hieronymus, “Rayleigh–Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation),” Appl. Math. Model. 32 (5), 660–676 (2008).

    Article  MATH  Google Scholar 

  13. I. B. Palymskiy, V. I. Palymskiy, A. V. Trilis, and A. V. Trifanov, “Numerical Simulation of Convective Flows in Reacting Gas Mixtures,” in Proc. XIX Int. Conf. on Computational Mechanics and Advanced Applied Systems (VMSPPS’2015), Alushta, Crimea, May 24–31, 2015, pp. 506–508.

    Google Scholar 

  14. A. V. Getling, Rayleigh–Benard Convection. Structure and Dynamic (Editorial URSS, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  15. D. V. Voronin, “Nonideal Detonation in a Smooth Pipe,” Fiz. Goreniya Vzryva 25 (2), 116–124 (1989) [Combust., Expl., Shock Waves 25 (2), 237–243 (1989)].

    Google Scholar 

  16. A. V. Trotsyuk, “Numerical Simulation of the Structure of Two-Dimensional Gas Detonation in an H2–O2–Ar Mixture,” Fiz. Goreniya Vzryva 35 (5), 93–103 (1999) [Combust., Expl., Shock Waves 35 (5), 549–558 (1999)].

    Google Scholar 

  17. A. A. Vasil’ev and A. V. Trotsyuk, “Experimental Investigation and Numerical Simulation of an Expanding Multifront Detonation Wave,” Fiz. Goreniya Vzryva 39 (1), 92–103 (2003) [Combust., Expl., Shock Waves 39 (1), 80–90 (2003)].

    Google Scholar 

  18. Yu. A. Nikolaev and P. A. Fomin, “A Model for Stationary Heterogeneous Detonation in a Gas–Droplet Mixture,” Fiz. Goreniya Vzryva 20 (4), 97–105 (1984) [Combust., Expl., Shock Waves 20 (4), 447–454 (1984)].

    Google Scholar 

  19. D. V. Voronin, “Detonation in a Cryogenic Hydrogen–OxygenMixture,” Fiz. Goreniya Vzryva 20 (4), 105–112 (1984) [Combust., Expl., Shock Waves 20 (4), 455–460 (1984)].

    Google Scholar 

  20. S. A. Zhdan and E. S. Prokhorov, “Calculation of the Cellular Structure of Detonation of Sprays in an H2–O2 System,” Fiz. Goreniya Vzryva 36 (6), 111–118 (2000) [Combust., Expl., Shock Waves 36 (6), 777–784 (2000)].

    Google Scholar 

  21. P. A. Fomin, K. S. Mitropetros, and H. Hieronymus, “Modeling of Detonation Processes in Chemically Active Bubble Systems at Normal and Elevated Initial Pressures,” J. Loss Prev. Process Ind. 16 (4), 323–331 (2003).

    Article  Google Scholar 

  22. S. A. Zhdan, “Detonation of a Column of a Chemically Active Bubbly Medium in a Liquid,” Fiz. Goreniya Vzryva 39 (4), 107–112 (2003) [Combust., Expl., Shock Waves 39 (4), 458–463 (2003)].

    Google Scholar 

  23. P. A. Fomin and J.-R. Chen, “Shock Induced Condensation in a Fuel-Rich Oxygen Containing Bubble in a Flammable Liquid,” Chem. Eng. Sci. 63 (3), 696–710 (2008).

    Article  Google Scholar 

  24. P. A. Fomin, “Model of Steady Heterogeneous detonation in a Gas–Film System for Fuel-Rich Mixtures,” in Dynamics of Continuous Media, No. 73: Mechanics of Fast Processes (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1985), pp. 122–136.

    Google Scholar 

  25. T. P. Gavrilenko, V. V. Grigoriev, S. A. Zhdan, et al., “Acceleration of Solid Particles by Gaseous Detonation Products,” Combust. Flame 66 (2), 121–128 (1986).

    Article  Google Scholar 

  26. S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, “Reactive Impulse from the Explosion of a Gas Mixture in a Semiinfinite Space,” Fiz. Goreniya Vzryva 30 (5), 90–97 (1994) [Combust., Expl., Shock Waves 30 (5), 657–663 (1994)].

    Google Scholar 

  27. S. A. Zhdan and F. A. Bykovskii, Continuous Spin Detonation (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  28. P. A. Fomin and J.-R. Chen, “Effect of Chemically Inert Particles on Thermodynamic Characteristics and Detonation of a Combustible Gas,” Combust. Sci. Technol. 181 (8), 1038–1064 (2009).

    Article  Google Scholar 

  29. A. V. Fedorov, P. A. Fomin, V. M. Fomin, et al., Mathematical Analysis of Detonation Suppression by Inert Particles (Kao Tech., Kaohsiung, Taiwan, 2012).

    Google Scholar 

  30. P. A. Fomin, A. V. Fedorov, and J.-R. Chen, “Control of Explosions in Silane–Air Mixtures by means of Chemically Inert Microparticles,” in Proc. of the Tenth Intern. Symp. on Hazards, Prevention and Mitigation of Industrial Explosions (X ISHPMIE) (Bergen, Norway, June 10–14, 2014), pp. 951–958.

    Google Scholar 

  31. P. A. Fomin and J.-R. Chen, “New Simple Method for Calculation Flammability Limits of Mixtures of Flammable Fuels,” IChemE Symp. Ser., No. 153 (2007), Paper No. 104 (in Proc. 12th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries).

  32. K. A. Nadolin, “On Penetrating Convection in the Approximation of an Isothermally Incompressible Fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 40–52 (1996).

    MATH  Google Scholar 

  33. K. I. Babenko and A. I. Rakhmanov, “Numerical Study of Two-Dimensional Convection,” Preprint No. 11 (Keldysh Institute of Applied Mathematics, Acad. of Sci. of the USSR, Moscow, 1988).

    Google Scholar 

  34. I. B. Palymskiy, “Asymptotic Mode of the Rayleigh–Benard Convection,” Vestn. Yuzhno-Uralsk. Univ., Ser. Mat. Mekh. Fiz. 7 (4), 61–67 (2015).

    MATH  Google Scholar 

  35. I. K. Kikoin, Tables of Physical Quantities: Reference Book (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  36. http://www.highexpert.ru/content/gases/air.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Palymskiy.

Additional information

Original Russian Text © I.B. Palymskiy, V.I. Palymskiy, P.A. Fomin.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 2, pp. 3–14, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palymskiy, I.B., Palymskiy, V.I. & Fomin, P.A. Rayleigh–Benard convection in a chemically active gas in the chemical equilibrium state. Combust Explos Shock Waves 53, 123–133 (2017). https://doi.org/10.1134/S0010508217020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217020010

Keywords

Navigation