Skip to main content
Log in

Dynamic model of the growth and collapse of pores in liquids and solids

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A model for the spall fracture and compaction of a damaged material based on a description of the motion of a single pore is proposed. The model takes into account the strength properties, the effect of pressure, surface tension, and viscosity of materials and inertial forces. Equations describing the dynamics of growth and collapse of pores are presented. The proposed model can be used to calculate the spall fracture and compaction of liquids and metals in both solid and liquid (molten) states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Ignatova, V. A. Raevskii, and I. S. Tselikov, “Kinetic Model for the Compaction of Damage in Materials with Strength,” Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 1, 18–23 (2014).

    Google Scholar 

  2. S. P. Kiselev, G. A. Ruev, A. P. Trunev, V. M. Fomin, and M. Sh. Shavaliev, Shock-Wave Processes in Two-Component and Two-Phase Media (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  3. S. P. Kiselev, “On Propagation of a Shock Wave in a Porous Material upon Collision of Plates, Fiz. Goreniya Vzryva 31 (4), 79–83 (1995) [Combust., Expl., Shock Waves 31 (4), 473–477 (1995)].

    Google Scholar 

  4. Ya. I. Zel’dovich, “On the Theory of Formation of a New Phase. Cavitation,” Zh. Eksp. Teoret. Fiz. 12 (11/12), 525–538 (1942).

    Google Scholar 

  5. V. K. Kedrinskii, “The Experimental Research and Hydrodynamic Models of a Sultan,” Arch. Mech. 26 (3), 535–540 (1974).

    Google Scholar 

  6. V. K. Kedrinskii, “Nonlinear Problems of Cavitation Breakdown of Liquids under Explosive Loading (Review),” Prikl. Mekh. Tekh. Fiz. 34 (3), 74–91(1993) [J. Appl. Mech. Tech. Phys. 34 (3), 74–91(1993)].

    Google Scholar 

  7. A. A. Bogach and A. V. Utkin, “Strength of Water under Pulsed Loading,” Prikl. Mekh. Tekh. Fiz. 41 (4), 198 (2000) [J. Appl. Mech. Tech. Phys. 41 (4), 752–758 (2000)].

    Google Scholar 

  8. A. V. Utkin, V. A. Sosikov, and A. A. Bogach, “Impulsive Tension of Hexane and Glycerin under Shock Wave Loading,” Prikl. Mekh. Tekh. Fiz. 44 (2), 27–33 (2003) [J. Appl. Mech. Tech. Phys. 44 (2), 174–179 (2003)].

    Google Scholar 

  9. G. I. Kanel et al., “Dynamic Strength of Tin and Lead Melts,” Pis’ma Zh. Eksp. Teoret. Fiz. 102 (8), 615–619 (2015).

    Google Scholar 

  10. M. Furlanetto et al., “The ORTEGA Experiment: Radiographic and Velocimetric Damage Measurements,” Ortega Preshot Report No. LA-UR-10-05028 (2010).

    Google Scholar 

  11. D. B. Holtkamp, D. A. Clark, E. N. Ferm, et al., “A Survey of High Explosive-Induced Damage and Spall in Selected Metals using Proton Radiography,” in Shock Compression of Condenses Mater., Proc. of the Conf., Portland, OR, July 2003 (Amer. Inst. Phys., Melville, 2003), pp. 477–482.

    Google Scholar 

  12. Zhang Chongyu, Hu Haibo, et al., “Dynamic Behaviors of Pb Flyer Driven by Head-on Detonation,” in Extreme States of Matter. Detonation. Shock Waves (VNIIEF, Sarov, 2009), pp. 422–426 [in Russian].

    Google Scholar 

  13. M. M. Carroll and A. C. Holt, “Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials,” J. Appl. Phys. 43, 1626–1635 (1972).

    Article  ADS  Google Scholar 

  14. N. F. Gavrilov, G. G. Ivanova, V. I. Selin and V. N. Sofronov, “The UP-OK Program for Solving One-Dimensional Problems of Continuum Mechanics in a One-Dimensional Complex,” Vopr. Atom. Nauki Tekh. 3 (11), 11–14 (1982).

    Google Scholar 

  15. M. Meyers and C. Aimone, “Dynamic Fracture (Spalling) of Metals,” Prog. Mater.Sci. 28, 1–96 (1983).

    Article  Google Scholar 

  16. A. S. Besov, V. K. Kedrinskii, and E. I. Pal’chikov, “The Initial Stage of Cavitation Using a Diffractive Optical Technique,” Pis’ma Zh. Tekh. Fiz. 10 (4), (1984).

    Google Scholar 

  17. Physical Quantities: Handbook, Ed. by I. C. Grigor’ev and E. Z. Meilikhov (Energoatomisdat, Moscow, 1991) [in Russian].

  18. W. Herrmann, “Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials,” J. Appl. Phys. 40 (6), 2490–2499 (1969).

    Article  ADS  Google Scholar 

  19. B. L. Glushak, O. N. Ignatova, S. S. Nadezhin, and V. A. Raevskii, “Relaxation Model for the Shear Strength of Five Metals,” Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 2, 25–36 (2012).

    Google Scholar 

  20. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems (Mir, Moscow, 1999) [Russian translation].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ignatova.

Additional information

Original Russian Text © M.A. Desyatnikova, O.N. Ignatova, V.A. Raevskii, I.S. Tselikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desyatnikova, M.A., Ignatova, O.N., Raevskii, V.A. et al. Dynamic model of the growth and collapse of pores in liquids and solids. Combust Explos Shock Waves 53, 103–109 (2017). https://doi.org/10.1134/S0010508217010142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217010142

Keywords

Navigation