Skip to main content
Log in

The Current Understanding of the Properties of Liquid Water: A Possible Alternative Solution

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Based on information extracted from the published literature, we analyze the current state of knowledge on the properties of liquid water. There is a discrepancy between the efforts made and the results achieved. There is still no common model and clear prospects. While searching for an optimal solution to the problem, we propose to use the gas–solid-state Frenkel approach, which takes the interconversion of molecules and ions into account. It is demonstrated that this model can be used to provide a uniform and consistent description of the most important parameters of liquid water such as dielectric constant, evaporation enthalpy, self-diffusion coefficient, viscosity, and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ph. Ball, Proc. Natl. Acad. Sci. U. S. A. 114, 13327 (2017). https://doi.org/10.1073/pnas.1703781114

    Article  Google Scholar 

  2. V. C. Nibali and M. Havenith, J. Am. Chem. Soc. 136, 12800 (2014). https://doi.org/10.1021/ja504441h

    Article  Google Scholar 

  3. C. Messori, Open Access Library J. 6, e5435 (2019). https://doi.org/10.4236/oalib.1105435

    Article  Google Scholar 

  4. M. Gerstein and M. Levitt, Sci. Am. 279, 101 (1998). https://doi.org/10.1038/scientificamerican1198-100

    Article  Google Scholar 

  5. Ph. Ball, Chem. Rev. 108, 74 (2008). https://doi.org/10.1021/cr068037a

    Article  Google Scholar 

  6. S. L. Meadley and C. A. Angell, in Water and Its Relatives: The Stable, Supercooled and Particularly the Stretched Regimes, Ed. by P. G. Debenedetti, M. A. Ricci, and F. Bruni (Varenna, Italy, 2013), pp. 19–23. https://doi.org/10.3254/978-1-61499-507-4-19

    Book  Google Scholar 

  7. K. A. Dill, T. M. Truskett, V. Vlachy, and B. Hribar-Lee, Ann. Rev. Biophys. Biomol. Struct. 34, 173 (2005). https://doi.org/10.1146/annurev.biophys.34.040204.144517

  8. L. G. M. Pettersson, R. H. Henchman, and A. Nilsson, Chem. Rev. 116, 7459 (2016). https://doi.org/10.1021/acs.chemrev.6b00363

  9. V. Raicu and Yu. Feldman, Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications (Oxford Scholarship, 2015). https://doi.org/10.1093/acprof:oso/9780199686513.001.0001

  10. M. Chaplin, Water Structure and Science. https:// www1.lsbu.ac.uk/water/water_anomalies.html.

  11. V. P. Sokhan, A. P. Jones, F. S. Cipcigan, et al., Proc. Natl. Acad. Sci. U. S. A. 112, 6341 (2015). https://doi.org/10.1073/pnas.1418982112

    Article  ADS  Google Scholar 

  12. M. J. Gillan, D. Alfe, and A. Michaelides, J. Chem. Phys. 144, 130901 (2016). https://doi.org/10.1063/1.4944633

    Article  ADS  Google Scholar 

  13. F. N. Keutsch, R. S. Fellers, M. G. Brown, et al., J. Am. Chem. Soc. 123, 5938 (2001). https://doi.org/10.1073/pnas.191266498

    Article  Google Scholar 

  14. B. Ruscic, J. Phys. Chem. A 117, 11940 (2013). https://doi.org/10.1021/jp403197t

    Article  Google Scholar 

  15. J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327

    Article  ADS  Google Scholar 

  16. N. A. Chumaevskii and M. N. Rodnikova, J. Mol. Liquids 106, 167 (2003). https://doi.org/10.1016/S0167-7322(03)00105-3

  17. V. Petkov, Y. Ren, and M. Suchomel, J. Phys.: Cond. Matter 24, 155102 (2012). https://doi.org/10.1088/0953-8984/24/15/155102

    Article  ADS  Google Scholar 

  18. G. G. Malenkov, Zh. Struct. Khim. 47, 5 (2006).

    Google Scholar 

  19. J. C. Del Valle, C. Arago, M. I. Marques, and J. A. Gonzalo, Ferroelectrics 46, 166 (2014). https://doi.org/10.1080/00150193.2014.895217

    Article  Google Scholar 

  20. R. H. Henchman, J. Phys.: Condens. Matter 28, 384001 (2016). https://doi.org/10.1088/0953-8984/28/38/384001

    Article  Google Scholar 

  21. M. V. Fernandez-Serra and E. Artacho, Phys. Rev. Lett. 96, 016404 (2006). https://doi.org/10.1103/PhysRev-Lett.96.016404

    Article  ADS  Google Scholar 

  22. P. G. Debenedetti, J. Phys.: Condens. Matter 15, 1669 (2003). https://doi.org/10.1088/0953-8984/15/45/R01

    Article  ADS  Google Scholar 

  23. J.-J. Max and C. Chapados, J. Chem. Phys. 134, 164502 (2011). https://doi.org/10.1063/1.3581035

    Article  ADS  Google Scholar 

  24. D. Eizenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, 969; Gidrometeoizdat, Leningrad, 1975).

  25. Y. Marcus, Ions in Water and Biophysical Implications (Springer, 2012). https://doi.org/10.1007/978-94-007-4647-3

    Book  Google Scholar 

  26. J. D. Eaves, J. J. Loparo, C. J. Fecko, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 13019 (2005). https://doi.org/10.1073/pnas.0505125102

    Article  ADS  Google Scholar 

  27. C. H. Cho, S. Singh, and G. W. Robinson, J. Chem. Phys. 107, 7979 (1997), https://doi.org/10.1063/1.475060

    Article  ADS  Google Scholar 

  28. K. Amann-Winkel, R. Bohmer, F. Fujara, et al., Rev. Modern Phys. 88, 011002 (2016). https://doi.org/10.1103/Rev-ModPhys.88.011002

    Article  ADS  Google Scholar 

  29. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005). https://doi.org/10.1063/1.2121687

    Article  ADS  Google Scholar 

  30. A. A. Volkov, V. G. Artemov, and A. V. Pronin, Eur. Phys. Lett. 106, 46004 (2014). https://doi.org/10.1209/0295-5075/106/46004

    Article  ADS  Google Scholar 

  31. V. G. Artemov, A. A. Volkov, A. V. Pronin, and A. A. Volkov, Biophysics 59, 520 (2014). https://doi.org/10.1134/S0006350914040022

    Article  Google Scholar 

  32. A. A. Volkov, V. G. Artemov, A. A. Volkov, Jr., and N. N. Sysoev, J. Mol. Liquids 248, 564 (2017). https://doi.org/10.1016/j.molliq.2017.10.071

    Article  Google Scholar 

  33. Ya. I. Frenkel, Kinetic Theory of Liquids (Nauka, Moscow, 1975; Dover, New York, 1955).

  34. J. D. Eaves, J. J. Loparo, C. J. Fecko, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 13019 (2005). https://doi.org/10.1073/pnas.0505125102

    Article  ADS  Google Scholar 

  35. D. Marx, Chem. Phys. Chem. 7, 1849 (2006). https://doi.org/10.1002/cphc.200600128

    Article  Google Scholar 

  36. P. L. Geissler, C. Dellago, D. Chandler, et al., Science 291, 2121 (2001). https://doi.org/10.1126/science.1056991

    Article  ADS  Google Scholar 

  37. K. S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960). https://doi.org/10.1103/PhysRev.119.863

    Article  ADS  Google Scholar 

  38. V. S. Oskotskii, Fiz. Tverd. Tela 5, 1082 (1963).

    Google Scholar 

  39. A. A. Volkov, A. A. Vasin, and A. A. Volkov Jr., Ferroelectrics 561, 57 (2020). https://doi.org/10.1080/00150193.2020.1736915

    Article  Google Scholar 

  40. A. A. Vasin and A. A. Volkov, Tech. Physics 65, 1411 (2020). https://doi.org/10.1134/S1063784220090285

    Article  ADS  Google Scholar 

  41. M. B. Salamon, Physics of Superion Conductors (Zinatne, Riga, 1982) [in Russian].

    Google Scholar 

  42. A. Volkov, A. A. Vasin, and A. A. Volkov Jr., Izv. Akad. Nauk, Ser. Fiz. 84, 1241 (2020). https://doi.org/10.31857/S0367676520090392

    Article  Google Scholar 

  43. I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, Phys. Chem. Chem. Phys. 18, 13941 (2016). https://doi.org/10.1039/C6CP02195F

    Article  Google Scholar 

  44. A. A. Volkov, A. A. Vasin, and A. A. Volkov Jr., Ferroelectrics 538, 83 (2019). https://doi.org/10.1080/00150193.2019.1569989

    Article  Google Scholar 

  45. IAPWS-Releases, http://www.iapws.org/release.html.

  46. J. L. Aragones, L. G. MacDowell, and C. Vega, J. Phys. Chem. A 115, 5745 (2011). https://doi.org/10.1021/jp105975c

    Article  Google Scholar 

  47. U. Kaatze, J. Mol. Liquids 259, 304 (2018). https://doi.org/10.1016/j.molliq.2018.03.038

    Article  Google Scholar 

  48. S. Glasstone, An Introduction to Electrochemistry (Affiliated East West Press, 1942; Inostrannaya Literatura, Moscow, 1951).

  49. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry (Kluwer, New York, 2002).

    Google Scholar 

  50. M. Eigen and L. de Maeyer, Proc. Roy. Soc. Lond. A247 (1251), 505 (1958). https://doi.org/10.1098/rspa.1958.0208

    Article  ADS  Google Scholar 

  51. M. Chaplin, Science in Society 58, 41 (2013).

    ADS  Google Scholar 

  52. B. B. Damaskin, O. A. Petriy, and G. A. Tsirlina, Electrochemistry (Khimiyas, Moscow, 2006) [in Russian].

    Google Scholar 

  53. V. G. Artemov, A. A. Volkov, N. N. Sysoev, and A. A. Volkov, Jr., Dokl. Physics 61, 1 (2016). https://doi.org/10.1134/S1028335816010043

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-02-00446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Volkov.

Ethics declarations

The authors declare no conflicts of interest. This work does not contain a description of research using humans and animals as objects.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, A.A., Volkov, A.A. The Current Understanding of the Properties of Liquid Water: A Possible Alternative Solution. BIOPHYSICS 66, 709–715 (2021). https://doi.org/10.1134/S0006350921050262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921050262

Keywords:

Navigation