Skip to main content
Log in

The Effect of Pressure of Gas Mixtures Containing Carbon Monoxide, Oxygen and Argon on the Shelf Life of Rat Heart Tissues in Hypothermic Conditions

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of different pressure levels of a gas mixture of carbon monoxide and oxygen on the shelf life of rat heart tissue during prolonged hypothermic (4°C) gas preservation with the durations of sample storage of 24, 36, and 48 h was evaluated. The pressure decrease of the CO/O2 gas mixture (in the ratio of 1 : 1) from 6.5 to 1.5 atm during 24 h preservation led to the appearance of myocardial infarction zones (17.74 ± 3.5% of the total sample area) and a violation of the contractile function of the ventricles. At the same time, the indicators of the heart shelf life after storage under pressure of 3.5 and 6.5 atm did not significantly differ. The advantage of the pressure of 6.5 atm compared to the pressure of 3.5 atm during 36 and 48 h preservation was observed. The myocardial infarction zones after 48 h of preservation were 33.65 ± 11.96% and 61.92 ± 6.38%, respectively. Exploratory introduction of argon to the gas mixture (CO : O2 : Ar = 2 : 2 : 1) for a possible synergistic increase in organoprotection in the experiments on heart preservation under the pressure of 3.5 atm did not result in significant improvement in the index of heart tissue shelf life. The potential mechanisms of the protective effect of the mixture of carbon monoxide and oxygen in hypothermic preservation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Global Observatory on Donation and Transplantation. http://www.transplant-observatory.org.

  2. S. V. Gautier and S. M. Khomyakov, Vestn. Transplantol. Iskusstv. Organ. 22 (2), 8 (2020).

    Google Scholar 

  3. E. G. Starikova, Doctoral Dissertation in Medicine (Tomsk, 2014).

  4. S. Ozaki, I. Kawase, H. Yamashita, et al., Interact. Cardiovasc. Thorac. Surg. 12 (4), 550 (2011).

    Article  Google Scholar 

  5. C. Steiger, J. Wollborn, M. Gutmann, et al., Eur. J. Pharm. Biopharm. 97, 96 (2015).

    Article  Google Scholar 

  6. A. Nakao, J. S. Neto, S. Kanno, et al., Am. J. Transplant. 5 (2), 282 (2005).

    Article  Google Scholar 

  7. N. Hatayama, M. Naito, S. Hirai, et al., Cell Transplant. 21 (2), 609 (2012).

    Article  Google Scholar 

  8. N. Hatayama, M. Inubushi, M. Naito, et al., Sci. Rep. 6, 32120 (2016).

    Article  ADS  Google Scholar 

  9. C. Suzuki, N. Hatayama, T. Ogawa, et al., Int. J. Mol. Sci. 21 (22), 8858 (2020).

    Article  Google Scholar 

  10. P. Y. Zhou, Z. Zhang, Y. L. Guo, et al., Transplant. Proc. 47 (9), 2746 (2015).

    Article  Google Scholar 

  11. E. E. Fesenko, Jr., E. L. Gagarinsky, A. S. Averin, et al., Biophysics (Moscow) 65 (4), 666 (2020).

    Article  Google Scholar 

  12. N. Hatayama, S. Hirai, K. Fukushige, et al., Sci. Rep. 9 (1), 7480 (2019).

    Article  ADS  Google Scholar 

  13. D. S. Nowrangi, J. Tang, and J. H. Zhang, Med. Gas Res. 4 (1), 3 (2014).

    Article  Google Scholar 

  14. S. G. Nair, Ann. Card. Anaesth. 22 (2), 111 (2019).

    Article  Google Scholar 

  15. F. Nespoli, S. Redaelli, L. Ruggeri, et al., Ann. Card. Anaesth. 22, 122 (2019).

    Article  Google Scholar 

  16. Y. Irani, J. L. Pype, A. R. Martin, et al., Nephron Extra 1 (1), 272 (2011).

    Article  Google Scholar 

  17. A. Faure, L. Bruzzese, J. G. Steinberg, et al., J. Transl. Med. 14, 40 (2016).

    Article  Google Scholar 

  18. A. Nakao and Y. Toyoda, Curr. Pharm. Biotechnol. 13 (6), 827 (2012).

    Article  Google Scholar 

  19. S. Ozaki, I. Kawase, H. Yamashita, et al., Circ. J. 79 (7), 1504 (2015).

    Article  Google Scholar 

  20. V. L. Mahan, Med. Gas Res. 10 (1), 37 (2020).

    Article  Google Scholar 

  21. K. S. Ozaki, S. Kimura, and N. Murase, Transplant. Rev. 26 (2), 125 (2012).

    Article  Google Scholar 

  22. B. S. Zuckerbraun, B. Y. Chin, M. Bilban, et al., FASEB J. 21, 1099 (2007).

    Article  Google Scholar 

  23. T. Leemann, P. Bonnabry, and P. Dayer, Life Sci. 54, 95 (1994).

    Article  Google Scholar 

  24. J. R. Alonso, F. Cardellach, and S. Lopez, Pharmacol. Toxicol. 93, 142 (2003).

    Article  Google Scholar 

  25. A. S. Almeida, C. Figueiredo-Pereira, and H. L. Vieira, Front. Physiol. 6, 33 (2015).

    Article  Google Scholar 

  26. K. L. McLaughlin, J. T. Hagen, H. S. Coalson, et al., Sci. Rep. 10, 17599 (2020).

    Article  ADS  Google Scholar 

  27. T. Abe, K. Yazawa, M. Fujino, et al., Lab. Invest. 97 (4), 468 (2017).

    Article  Google Scholar 

  28. N. L. Vekshin, Biophysics of Mitochondria (Foton-Vek, Pushchino, 2019) [in Russian].

    Book  Google Scholar 

  29. T. M. Suszynski, M. D. Rizzari, W. E. Scott, et al., J. Cardiothorac. Surg. 8, 105 (2013).

    Article  Google Scholar 

  30. Novel organ preservation device to reduce transplant waiting list. https://www.ncl.ac.uk/press/articles/latest/2020/08/scubatxorganpreservationdevice/

Download references

Funding

The research was carried out with the financial support of the Russian Foundation for Basic Research, project no. 20-34-90132/20 dated August 18, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gurin.

Ethics declarations

Conflict of interest. The authors declare that there is no conflict of interest.

Statement on the welfare of animals. The studies were conducted in accordance with the requirements of the European Convention for the Protection of Animals 2010/63/EU.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurin, A.E., Gagarinsky, E.L. & Fesenko, E.E. The Effect of Pressure of Gas Mixtures Containing Carbon Monoxide, Oxygen and Argon on the Shelf Life of Rat Heart Tissues in Hypothermic Conditions. BIOPHYSICS 66, 821–827 (2021). https://doi.org/10.1134/S0006350921050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921050079

Navigation