Skip to main content
Log in

The Properties of Ion Channels Formed in Bilayer Lipid Membranes by Amphotericin and N-Methyl Derivative of Amphotericin under Their Action on One Side

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It was found that the modification of one side of lipid membranes by amphotericin B and N‑methyl derivatives of amphotericin B (methamphocin) resulted in a discrete increase in the membrane conductivity by the channel mechanism. The conditions under which amphotericin B increased the conductivity of membranes upon addition on one side of the membranes were found. The effect of amphotericin B upon addition on one side of the membranes was observed in an acidic medium (pH 3.0) and at a two-fold lower concentration of phospholipids in the membrane-forming solution. A large dispersion of the conductivity from 2 to 20 pS of single channels was revealed. The channels with the conductivity of 10 pS were most likely to occur. The histogram of distribution of the conductivity of metamphocin channels showed that the channels with the conductivity of 5 pS were most likely to occur. The selective permeability of membranes upon addition of methamphocin on one side of the membranes was predominantly anionic and did not depend on the concentration of cholesterol in the membranes. The mechanism of the amphotericin B and methamphocin action from one side of the membranes was due to the formation of semipores in the membranes, which were asymmetric in their structure. It was assumed that the selective permeability of the amphotericin and metamphocin channels was determined by the molecular structure of the hydrophilic chain that lines the inner cavity of the semipore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Nakagawa, Y. Umegawa, N. Matsushita, et al., Biochemistry 55 (24), 3392 (2016).

    Article  Google Scholar 

  2. A. Neumann, M. Wieczor, J. Zielinska, et al., Langmuir 32 (14), 3452 (2016)

    Article  Google Scholar 

  3. J. M. Falcon-Gonzalez, G. Jimenez-Dominguez, I. Ortega-Blake, et al., J. Chem. Theory Comput. 13 (7), 3388 (2017).

    Article  Google Scholar 

  4. Kh. M. Kasumov, Structure and Membrane Function of Polyenic Macrolide Antibiotics (Nauka, Moscow, 2009).

    Google Scholar 

  5. S. S. Efimova, L. V. Schagina, and O. S. Ostroumova, Acta Naturae 6 (4), 67 (2014).

    Article  Google Scholar 

  6. H. Kagohashi, O. Shirai, Sh. Kubota, et al., Electroanalysis 26 (3), 625 (2014).

    Article  Google Scholar 

  7. D. M. Kamiński, Eur. Biophys. J. 43 (10–11), 453 (2014).

  8. K. Boukari, S. Balme, J. M. Janot, et al., J. Membrane Biol. 249 (3), 261 (2016).

    Article  Google Scholar 

  9. T. Shahmoradi, M. Ashrafpour, and H. Sepehri, J. Babol Univ. Med. Sci. 18 (2), 26 (2016).

    Google Scholar 

  10. A. A. Samedova, T. P. Tagi-zade, and Kh. M. Kasumov, Russ. J. Bioorg. Chem. 44 (3), 337 (2018).

    Article  Google Scholar 

  11. T. S. Yang, K. L. Ou, P. W. Peng, et al., Biochim. Biophys. Acta – Biomembranes 1828 (8), 1794 (2013).

  12. R. Brutyan and P. McPhee, J. Gen. Physiol. 107, 69 (1996).

    Article  Google Scholar 

  13. S. Kintali, G. K. Varshney, and K. Das, Chem. Select. 3 (38), 10559 (2018).

    Google Scholar 

  14. B. A. Vainshtein, G. E. Grinberg, M. A. Mikhailova, et al., in Proc. Symp. “Prospects in Bioorganic Chemistry for Producing Novel Medicinal Preparations” (Riga, 1982), p. 235.

  15. M. P. Borisova, L. N. Ermishkin, and A. Y. Silberstein, Biochim. Biophys. Acta, Biomembr. 553, 450 (1979).

    Article  Google Scholar 

  16. M. P. Borisova, L. N. Ermishkin, and A. Ya. Zil’bershtein, Biofizika 26 (6), 1093 (1978).

    Google Scholar 

  17. M. Liu, M. Chen, and Z. Yang, Drug Delivery 24 (1), 1 (2017).

    Google Scholar 

  18. E. Grela, M. Wieczor, R. Luchowski, et al., Mol. Pharm. 15 (9), 4202 (2018).

    Article  Google Scholar 

  19. J. He, Ch. Chipot, X. Shao, and W. Cai, J. Phys. Chem. 117 (22), 11750 (2013).

    Google Scholar 

  20. S. De Marie, R. Janknegt, and I. A. J. Bakker-Woudenberg, J. Antimicrob. Chemother. 33, 907 (1994).

    Article  Google Scholar 

  21. A. Mamidi, J. A. DeSimone, and R. J. Pomerantz, J. Neurovirol. 8, 158 (2002).

    Article  Google Scholar 

  22. K. A. Sepkowitz, Clin. Infect. Dis. 34, 1098 (2002).

    Article  Google Scholar 

  23. D. S. Palacios, L. Dailey, D. M. Siebert, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (17), 6733 (2011).

    Article  ADS  Google Scholar 

  24. M. N. Preobrazhenskaya, E. N. Olsufyeva, S. E. Solovieva, et al., J. Med. Chem. 52, 189 (2009).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Foundation for the Development of Science under the President of the Republic of Azerbaijan, project no. EIF-BGM-3-BRFTF-2+/2017-15/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Pashazade.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: PA—polyene antibiotics; BLM—bilayer lipid membranes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashazade, T.D., Kasumov, K.M. The Properties of Ion Channels Formed in Bilayer Lipid Membranes by Amphotericin and N-Methyl Derivative of Amphotericin under Their Action on One Side. BIOPHYSICS 66, 428–433 (2021). https://doi.org/10.1134/S0006350921030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030131

Navigation