Skip to main content
Log in

Oxidative Stress-Induced Platelet Apoptosis/Activation: Alleviation by Purified Curcumin via ASK1-JNK/p-38 Pathway

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Abbreviations

AAPH:

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

BDMC:

bisdemethoxycurcumin

CVD:

cardiovascular disease

DMC:

demethoxycurcumin

GSH:

glutathione

ROS:

reactive oxygen species

References

  1. Quach, M. E., Chen, W., and Li, R. (2018) Mechanisms of platelet clearance and translation to improve platelet storage, Blood, 131, 1512-1521, https://doi.org/10.1182/blood-2017-08-743229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thushara, R. M., Hemshekhar, M., Santhosh, M. S., Jnaneshwari, S., Nayaka, S. C., Naveen, S., Kemparaju, K., and Girish, K. S. (2013) Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation, Mol. Cell. Biochem., 373, 73-83, https://doi.org/10.1007/s11010-012-1476-7.

    Article  CAS  PubMed  Google Scholar 

  3. Opneja, A., Kapoor, S., and Stavrou, E. X. (2019) Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing, Thromb. Res., 179, 56-63, https://doi.org/10.1016/j.thromres.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López, J. A., and Berliner, N. (2017) Introduction to a series of reviews on clinical platelet disorders, Blood, 129, 2821-2822, https://doi.org/10.1182/blood-2017-04-773507.

    Article  CAS  PubMed  Google Scholar 

  5. Bye, A. P., Unsworth, A. J., and Gibbins, J. M. (2016) Platelet signaling: a complex interplay between inhibitory and activatory networks, J. Thromb. Haemost., 14, 918-930, https://doi.org/10.1111/jth.13302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crowther, M. A. (2005) Pathogenesis of atherosclerosis, Hematol. Am. Soc. Hematol. Educ. Program, 2005, 436-441, https://doi.org/10.1182/asheducation-2005.1.436.

    Article  Google Scholar 

  7. Prabhakaran, D., Jeemon, P., and Roy, A. (2016) Cardiovascular diseases in India: current epidemiology and future directions, Circulation, 133, 1605-1620, https://doi.org/10.1161/CIRCULATIONAHA.114.008729.

    Article  PubMed  Google Scholar 

  8. Wool, G. D., and Miller, J. L. (2021) The impact of COVID-19 disease on platelets and coagulation, Pathobiology, 88, 15-27, https://doi.org/10.1159/000512007.

    Article  CAS  PubMed  Google Scholar 

  9. Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., and Sharifi-Rad, J. (2020) Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases, Front. Physiol., 11, 694, https://doi.org/10.3389/fphys.2020.00694.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dhalla, N. S., Temsah, R. M., and Netticadan, T. (2000) Role of oxidative stress in cardiovascular diseases, J. Hypertens., 18, 655-673, https://doi.org/10.1097/00004872-200018060-00002.

    Article  CAS  PubMed  Google Scholar 

  11. Uttara, B., Singh, A. V., Zamboni, P., and Mahajan, R. T. (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 7, 65-74, https://doi.org/10.2174/157015909787602823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel, P., and Naik, U. P. (2020) Platelet MAPKs-a 20+ year history: What do we really know? J. Thromb. Haemost., 18, 2087-2102, https://doi.org/10.1111/jth.14967.

    Article  CAS  PubMed  Google Scholar 

  13. Muslin, A. J. (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets, Clin. Sci. (Lond.), 115, 203-218, https://doi.org/10.1042/CS20070430.

    Article  CAS  PubMed  Google Scholar 

  14. Forni, C., Facchiano, F., Bartoli, M., Pieretti, S., Facchiano, A., D’Arcangelo, D., Norelli, S., Valle, G., Nisini, R., Beninati, S., Tabolacci, C., and Jadeja, R. N. (2019) Beneficial role of phytochemicals on oxidative stress and age-related diseases, Biomed. Res. Int., 2019, 8748253, https://doi.org/10.1155/2019/8748253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aggarwal, B. B., Kumar, A., and Bharti, A. C. (2003) Anticancer potential of curcumin: preclinical and clinical studies, Anticancer Res., 23, 363-398.

    CAS  PubMed  Google Scholar 

  16. Reddy, R. C., Vatsala, P. G., Keshamouni, V. G., Padmanaban, G., and Rangarajan, P. N. (2005) Curcumin for malaria therapy, Biochem. Biophys. Res. Commun., 326, 472-474, https://doi.org/10.1016/j.bbrc.2004.11.051.

    Article  CAS  PubMed  Google Scholar 

  17. Wright, L. E., Frye, J. B., Gorti, B., Timmermann, B. N., and Funk, J. L. (2013) Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer, Curr. Pharm. Des., 19, 6218-6225, https://doi.org/10.2174/1381612811319340013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava, R., Puri, V., Srimal, R. C., and Dhawan, B. N. (1986) Effect of curcumin on platelet aggregation and vascular prostacyclin synthesis, Arzneimittel Forschung, 36, 715-717.

    CAS  PubMed  Google Scholar 

  19. Shah, B. H., Nawaz, Z., Pertani, S. A., Roomi, A., Mahmood, H., Saeed, S. A., and Gilani, A. H. (1999) Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling, Biochem. Pharmacol., 58, 1167-1172, https://doi.org/10.1016/s0006-2952(99)00206-3.

    Article  CAS  PubMed  Google Scholar 

  20. Hewlings, S. J., and Kalman, D. S. (2017) Curcumin: a review of its effects on human health, Foods, 6, 92, https://doi.org/10.3390/foods6100092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgos-Moron, E., Calderon-Montano, J. M., Salvador, J., Robles, A., and Lopez-Lazaro, M. (2010) The dark side of curcumin, Int. J. Cancer, 126, 1771-1775, https://doi.org/10.1002/ijc.24967.

    Article  CAS  PubMed  Google Scholar 

  22. Rukoyatkina, N., Shpakova, V., Sudnitsyna, J., Panteleev, M., Makhoul, S., Gambaryan, S., and Jurk, K. (2021) Curcumin at low doses potentiates and at high doses inhibits ABT-737-induced platelet apoptosis, Int. J. Mol. Sci., 22, 5405, https://doi.org/10.3390/ijms22105405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta, S. C., Patchva, S., and Aggarwal, B. B. (2013) Therapeutic roles of curcumin: lessons learned from clinical trials, AAPS J., 15, 195-218, https://doi.org/10.1208/s12248-012-9432-8.

    Article  CAS  PubMed  Google Scholar 

  24. Paul, M., Manikanta, K., Hemshekhar, M., Sundaram, M. S., Naveen, S., Ramesh, T. N., Kemparaju, K., and Girish, K. S. (2020) Bisdemethoxycurcumin promotes apoptosis in human platelets via activation of ERK signaling pathway, Toxicol. In Vitro, 63, 104743, https://doi.org/10.1016/j.tiv.2019.104743.

    Article  CAS  PubMed  Google Scholar 

  25. NaveenKumar, S. K., Hemshekhar, M., Kemparaju, K., and Girish, K. S. (2019) Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: protection by melatonin, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 2303-2316, https://doi.org/10.1016/j.bbadis.2019.05.009.

    Article  CAS  PubMed  Google Scholar 

  26. NaveenKumar, S. K., SharathBabu, B. N., Hemshekhar, M., Kemparaju, K., Girish, K. S., and Mugesh, G. (2018) The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets, ACS Chem. Biol., 13, 1996-2002, https://doi.org/10.1021/acschembio.8b00458.

    Article  CAS  PubMed  Google Scholar 

  27. Paul, M., Hemshekhar, M., Kemparaju, K., and Girish, K. S. (2019) Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity, Free Radic. Biol. Med., 130, 196-205, https://doi.org/10.1016/j.freeradbiomed.2018.10.453.

    Article  CAS  PubMed  Google Scholar 

  28. NaveenKumar, S. K., Hemshekhar, M., Sundaram, M. S., Kemparaju, K., and Girish, K. S. (2017) Cell-free methemoglobin drives platelets to apoptosis via mitochondrial ROS-mediated activation of JNK and p38 MAP kinase, Biochem. Biophys. Res. Commun., 491, 183-191, https://doi.org/10.1016/j.bbrc.2017.07.073.

    Article  CAS  PubMed  Google Scholar 

  29. Thushara, R. M., Hemshekhar, M., Sunitha, K., Kumar, M. S., Naveen, S., Kemparaju, K., and Girish, K. S. (2013) Sesamol induces apoptosis in human platelets via reactive oxygen species-mediated mitochondrial damage, Biochimie, 95, 2060-2068, https://doi.org/10.1016/j.biochi.2013.07.032.

    Article  CAS  PubMed  Google Scholar 

  30. Ferlini, C., and Scambia, G. (2007) Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange, Nat. Protoc., 2, 3111-3114, https://doi.org/10.1038/nprot.2007.397.

    Article  CAS  PubMed  Google Scholar 

  31. Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence, Biophys. J., 76, 725-734, https://doi.org/10.1016/S0006-3495(99)77239-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, S., Wang, Y., and Li, S. J. (2014) Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion, Biochem. Biophys. Res. Commun., 448, 424-429, https://doi.org/10.1016/j.bbrc.2014.04.127.

    Article  CAS  PubMed  Google Scholar 

  33. Hissin, P. J., and Hilf, R. (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues, Anal. Biochem., 74, 214-226, https://doi.org/10.1016/0003-2697(76)90326-2.

    Article  CAS  PubMed  Google Scholar 

  34. Sener, A., Cevik, O., Yanikkaya-Demirel, G., Apikoglu-Rabus, S., and Ozsavci, D. (2012) Influence of platelet gamma-glutamyltransferase on oxidative stress and apoptosis in the presence of holo-transferrin, Folia Biol. (Praha), 58, 193-202.

    CAS  PubMed  Google Scholar 

  35. Girish, K. S., Paul, M., Thushara, R. M., Hemshekhar, M., Shanmuga Sundaram, M., Rangappa, K. S., and Kemparaju, K. (2013) Melatonin elevates apoptosis in human platelets via ROS mediated mitochondrial damage, Biochem. Biophys. Res. Commun., 438, 198-204, https://doi.org/10.1016/j.bbrc.2013.07.053.

    Article  CAS  PubMed  Google Scholar 

  36. Paul, M., Hemshekhar, M., Thushara, R. M., Sundaram, M. S., NaveenKumar, S. K., Naveen, S., Devaraja, S., Somyajit, K., West, R., Basappa, Nayaka, S. C., Zakai, U. I., Nagaraju, G., Rangappa, K. S., Kemparaju, K., and Girish, K. S. (2015) Methotrexate promotes platelet apoptosis via JNK-mediated mitochondrial damage: alleviation by N-acetylcysteine and N-acetylcysteine amide, PLoS One, 10, e0127558, https://doi.org/10.1371/journal.pone.0127558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vishalakshi, G. J., Hemshekhar, M., Sandesha, V. D., Prashanth, K. S., Jagadish, S., Paul, M., Kemparaju, K., and Girish, K. S. (2021) Bisphenol AF elevates procoagulant platelets by inducing necroptosis via RIPK1-inflammasome axis, Toxicology, 454, 152742, https://doi.org/10.1016/j.tox.2021.152742.

    Article  CAS  PubMed  Google Scholar 

  38. Paul, M., Hemshekhar, M., Kemparaju, K., and Girish, K. S. (2019) Aggregation is impaired in starved platelets due to enhanced autophagy and cellular energy depletion, Platelets, 30, 487-497, https://doi.org/10.1080/09537104.2018.1475630.

    Article  CAS  PubMed  Google Scholar 

  39. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275, https://doi.org/10.1016/S0021-9258(19)52451-6.

    Article  CAS  PubMed  Google Scholar 

  40. Vanags, D. M., Orrenius, S., and Aguilar-Santelises, M. (1997) Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis, Br. J. Haematol., 99, 824-831, https://doi.org/10.1046/j.1365-2141.1997.4813284.x.

    Article  CAS  PubMed  Google Scholar 

  41. Dix, M. M., Simon, G. M., Wang, C., Okerberg, E., Patricelli, M. P., and Cravatt, B. F. (2012) Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome, Cell, 150, 426-440, https://doi.org/10.1016/j.cell.2012.05.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, W. H., Stitham, J., Gleim, S., Di Febbo, C., Porreca, E., Fava, C., Tacconelli, S., Capone, M., Evangelista, V., Levantesi, G., Wen, L., Martin, K., Minuz, P., Rade, J., Patrignani, P., and Hwa, J. (2011) Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane, J. Clin. Invest., 121, 4462-4476, https://doi.org/10.1172/JCI59291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, W. H., Stitham, J., Jin, Y., Liu, R., Lee, S. H., Du, J., Atteya, G., Gleim, S., Spollett, G., Martin, K., and Hwa, J. (2014) Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets, Circulation, 129, 1598-1609, https://doi.org/10.1161/CIRCULATIONAHA.113.005224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Redza-Dutordoir, M., and Averill-Bates, D. A. (2016) Activation of apoptosis signalling pathways by reactive oxygen species, Biochim. Biophys. Acta, 1863, 2977-2992, https://doi.org/10.1016/j.bbamcr.2016.09.012.

    Article  CAS  PubMed  Google Scholar 

  45. Toyokuni, S. (1999) Reactive oxygen species-induced molecular damage and its application in pathology, Pathol. Int., 49, 91-102, https://doi.org/10.1046/j.1440-1827.1999.00829.x.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, H., Ma, Q., Ye, L., and Piao, G. (2016) The traditional medicine and modern medicine from natural products, Molecules, 21, 559, https://doi.org/10.3390/molecules21050559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smaili, S., Hirata, H., Ureshino, R., Monteforte, P. T., Morales, A. P., Muler, M. L., Terashima, J., Oseki, K., Rosenstock, T. R., Lopes, G. S., and Bincoletto, C. (2009) Calcium and cell death signaling in neurodegeneration and aging, An. Acad. Bras. Cienc., 81, 467-475, https://doi.org/10.1590/s0001-37652009000300011.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma, N., and Nehru, B. (2015) Characterization of the lipopolysaccharide induced model of Parkinson’s disease: role of oxidative stress and neuroinflammation, Neurochem. Int., 87, 92-105, https://doi.org/10.1016/j.neuint.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  49. Chinopoulos, C., and Adam-Vizi, V. (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme, FEBS J., 273, 433-450, https://doi.org/10.1111/j.1742-4658.2005.05103.x.

    Article  CAS  PubMed  Google Scholar 

  50. Hempel, N., and Trebak, M. (2017) Crosstalk between calcium and reactive oxygen species signaling in cancer, Cell Calcium, 63, 70-96, https://doi.org/10.1016/j.ceca.2017.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. NaveenKumar, S. K., Thushara, R. M., Sundaram, M. S., Hemshekhar, M., Paul, M., Thirunavukkarasu, C., Basappa, Nagaraju, G., Raghavan, S. C., Girish, K. S., Kemparaju, K., and Rangappa, K. S. (2015) Unconjugated bilirubin exerts pro-apoptotic effect on platelets via p38- MAPK activation, Sci. Rep., 5, 15045, https://doi.org/10.1038/srep15045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akbar, M., Essa, M. M., Daradkeh, G., Abdelmegeed, M. A., Choi, Y., Mahmood, L., and Song, B. J. (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress, Brain Res., 1637, 34-55, https://doi.org/10.1016/j.brainres.2016.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petrosillo, G., Moro, N., Ruggiero, F. M., and Paradies, G. (2009) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release, Free Radic. Biol. Med., 47, 969-974, https://doi.org/10.1016/j.freeradbiomed.2009.06.032.

    Article  CAS  PubMed  Google Scholar 

  54. Paradies, G., Paradies, V., Ruggiero, F. M., and Petrosillo, G. (2018) Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection, Am. J. Physiol. Heart Circ. Physiol., 315, H1341-H1352, https://doi.org/10.1152/ajpheart.00028.2018.

    Article  CAS  PubMed  Google Scholar 

  55. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 91, 479-489, https://doi.org/10.1016/s0092-8674(00)80434-1.

    Article  CAS  PubMed  Google Scholar 

  56. Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., and Turner, N. D. (2004) Glutathione metabolism and its implications for health, J. Nutr., 134, 489-492, https://doi.org/10.1093/jn/134.3.489.

    Article  CAS  PubMed  Google Scholar 

  57. Birge, R. B., Boeltz, S., Kumar, S., Carlson, J., Wanderley, J., Calianese, D., Barcinski, M., Brekken, R. A., Huang, X., Hutchins, J. T., Freimark, B., Empig, C., Mercer, J., Schroit, A. J., Schett, G., and Herrmann, M. (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer, Cell Death Differ., 23, 962-978, https://doi.org/10.1038/cdd.2016.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, G., Yuan, Z., Tian, X., Xiong, X., Guo, F., Lin, Z., and Qin, Z. (2021) Pimpinellin inhibits collagen-induced platelet aggregation and activation through inhibiting granule secretion and PI3K/Akt pathway, Front. Pharmacol., 12, 706363, https://doi.org/10.3389/fphar.2021.706363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Binsker, U., Palankar, R., Wesche, J., Kohler, T. P., Prucha, J., Burchhardt, G., Rohde, M., Schmidt, F., Broker, B. M., Mamat, U., Pane-Farre, J., Graf, A., Ebner, P., Greinacher, A., and Hammerschmidt, S. (2018) Secreted immunomodulatory proteins of Staphylococcus aureus activate platelets and induce platelet aggregation, Thromb. Haemost., 118, 745-757, https://doi.org/10.1055/s-0038-1637735.

    Article  PubMed  Google Scholar 

  60. Blair, P., and Flaumenhaft, R. (2009) Platelet alpha-granules: basic biology and clinical correlates, Blood Rev., 23, 177-189, https://doi.org/10.1016/j.blre.2009.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan, X., Wang, C., Shi, P., Gao, W., Gu, J., Geng, Y., Yang, W., Wu, N., Wang, Y., Xu, Y., Chen, X., Zhang, L., Wang, K., Su, B., and Liu, J. (2018) Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice, Blood Adv., 2, 1439-1448, https://doi.org/10.1182/bloodadvances.2017015149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Canobbio, I., Reineri, S., Sinigaglia, F., Balduini, C., and Torti, M. (2004) A role for p38 MAP kinase in platelet activation by von Willebrand factor, Thromb. Haemost., 91, 102-110, https://doi.org/10.1160/TH03-02-0083.

    Article  CAS  PubMed  Google Scholar 

  63. Flaumenhaft, R. (2017) Stressed platelets ASK1 for a MAPK, Blood, 129, 1066-1068, https://doi.org/10.1182/blood-2017-01-760546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Manikanta, K., Naveen Kumar, S. K., Hemshekhar, M., Kemparaju, K., and Girish, K. S. (2020) ASK1 inhibition triggers platelet apoptosis via p38-MAPK-mediated mitochondrial dysfunction, Haematologica, 105, e419-e423, https://doi.org/10.3324/haematol.2019.233908.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jeon, B. R., Irfan, M., Kim, M., Lee, S. E., Lee, J. H., and Rhee, M. H. (2019) Schizonepeta tenuifolia inhibits collagen stimulated platelet function via suppressing MAPK and Akt signaling, J. Biomed. Res., 33, 250-257, https://doi.org/10.7555/JBR.32.20180031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

KM thanks ICMR-SRF (File No. 45/25/2020-BIO/BMS and Dated 10.3.2021) for the research fellowship. Authors thank Central instrumentation facility, Institution of excellence (IOE), the University of Mysore for providing central instrumentation facilities. K.K. acknowledges funding from the DST-SERB (EEQ/2021/000142). KSG acknowledges funding from the DST-SERB (EEQ/2021/000375). The authors thanks members of the KK lab for their kind help during the study.

Author information

Authors and Affiliations

Authors

Contributions

K.S.G., K.K., and M.P. designed the study; M.P. and K.M. performed the experiments; M.P., K.M., V.D.S., S.S.M., T.N.R., H.K., S.S.K., and S.N. analyzed the data; M.P., S.S.M., K.S.G., and K.K. wrote and edited the manuscript. K.S.G. and K.K. conceived and directly supervised the study. All authors have read and agreed to the published version the manuscript.

Corresponding authors

Correspondence to Kempaiah Kemparaju or Kesturu S. Girish.

Ethics declarations

Blood was drawn from the healthy human volunteers with informed consent, according to the Institutional Human Ethical Committee (IHEC-UOM No. 70/Res NOC/2020-21) guidelines, University of Mysore, Mysuru. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikanta, K., Paul, M., Sandesha, V.D. et al. Oxidative Stress-Induced Platelet Apoptosis/Activation: Alleviation by Purified Curcumin via ASK1-JNK/p-38 Pathway. Biochemistry Moscow 89, 417–430 (2024). https://doi.org/10.1134/S0006297924030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924030039

Keywords

Navigation