Skip to main content
Log in

Effect of Biotin Starvation on Gene Expression in Komagataella phaffii Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Methylotrophic yeast Komagataella phaffii is widely used in biotechnology for recombinant protein production. Due to the practical significance of these yeasts, it is extremely important to properly select cultivation conditions and optimize the media composition. In this study the effect of biotin starvation on gene expression in K. phaffii at transcriptome level was investigated. It was demonstrated, that the response of K. phaffii cell to biotin deficiency strongly depends on the carbon source in the medium. In the media containing glycerol, biotin deficiency led to activation of the genes involved in biotin metabolism, glyoxylate cycle, and synthesis of acetyl-CoA in cytoplasm, as well as repression of the genes, involved in lipo- and gluconeogenesis. In the methanol-containing media, biotin deficiency primarily led to repression of the genes, involved in protein synthesis, and activation of cell response to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AltOx:

alternative oxidase

GAP:

glyceraldehyde 3-phosphate

OxAc:

oxaloacetate

PEP:

phosphoenolpyruvate

PEPCK:

phosphoenolpyruvate carboxykinase

ROS:

reactive oxygen species

TCA:

tricarboxylic acid cycle

References

  1. Karbalaei, M., Rezaee, S. A., and Farsiani, H. (2020) Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins, J. Cell. Physiol., 235, 5867-5881, https://doi.org/10.1002/jcp.29583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cregg, J. M. (2007) Introduction: distinctions between Pichia pastoris and other expression systems, Methods Mol. Biol., 389, 1-10, https://doi.org/10.1007/978-1-59745-456-8_1.

    Article  CAS  PubMed  Google Scholar 

  3. Heistinger, L., Gasser, B., and Mattanovich, D. (2020) Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris, Microbiology, 166, 614-616, https://doi.org/10.1099/mic.0.000958.

    Article  CAS  PubMed  Google Scholar 

  4. Carneiro, C. V. G. C., Serra, L. A., Pacheco, T. F., Ferreira, L. M. M., Brandão, L. T. D., Freitas, M. N. D. M., Trichez, D., and Almeida, J. R. M. D. (2022) Advances in Komagataella phaffii engineering for the production of renewable chemicals and proteins, Fermentation, 8, 575, https://doi.org/10.3390/fermentation8110575.

    Article  CAS  Google Scholar 

  5. Hartner, F. S., and Glieder, A. (2006) Regulation of methanol utilisation pathway genes in yeasts, Microb. Cell Fact., 5, 1-21, https://doi.org/10.1186/1475-2859-5-39.

    Article  CAS  Google Scholar 

  6. Ergün, B. G., Berrios, J., Binay, B., and Fickers, P. (2021) Recombinant protein production in Pichia pastoris: from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling, FEMS Yeast Res., 21, foab057, https://doi.org/10.1093/femsyr/foab057.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosalkar, A., Sahai, V., and Srivastava, A. (2008) Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production, Bioresour. Technol., 99, 7906-7910, https://doi.org/10.1016/j.biortech.2008.01.059.

    Article  CAS  PubMed  Google Scholar 

  8. Joseph, J. A., Akkermans, S., Cornillie, E., Deberlanger, J., and Van Impe, J. F. M. (2023) Optimal culture medium selection and supplementation for recombinant thaumatin II production by Komagataella phaffii, Food Bioprod. Process, 139, 190-203, https://doi.org/10.1016/j.fbp.2023.04.001.

    Article  CAS  Google Scholar 

  9. Matthews, C. B., Kuo, A., Love, K. R., and Love, J. C. (2018) Development of a general defined medium for Pichia pastoris, Biotechnol. Bioeng., 115, 103-113, https://doi.org/10.1002/bit.26440.

    Article  CAS  PubMed  Google Scholar 

  10. Rumiantsev, A. M., Padkina, M. V., and Sambuk, E. V. (2013) Effect of nitrogen source on gene expression of first steps of methanol utilization pathway in Pichia pastoris [in Russian], Genetika, 49, 454-460, https://doi.org/10.7868/S0016675813040115.

    Article  CAS  PubMed  Google Scholar 

  11. Rumjantsev, A. M., Bondareva, O. V., Padkina, M. V., and Sambuk, E. V. (2014) Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris, ScientificWorldJournal, 2014, 1-9, https://doi.org/10.1155/2014/743615.

    Article  Google Scholar 

  12. Ortega-Cuellar, D., Hernandez-Mendoza, A., Moreno-Arriola, E., Carvajal-Aguilera, K., Perez-Vazquez, V., Gonzalez-Alvarez, R., and Velazquez-Arellano, A. (2010) Biotin starvation with adequate glucose provision causes paradoxical changes in fuel metabolism gene expression similar in rat (Rattus norvegicus), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae), J. Nutrigenet. Nutrigenomics, 3, 18-30, https://doi.org/10.1159/000318054.

    Article  CAS  PubMed  Google Scholar 

  13. Perli, T., Wronska, A. K., Ortiz-Merino, R. A., Pronk, J. T., and Daran, J. M. (2020) Vitamin requirements and biosynthesis in Saccharomyces cerevisiae, Yeast, 37, 283-304, https://doi.org/10.1002/yea.3461.

    Article  CAS  PubMed  Google Scholar 

  14. Hall, C., and Dietrich, F. S. (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering, Genetics, 177, 2293-2307, https://doi.org/10.1534/genetics.107.074963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasser, B., Dragosits, M., and Mattanovich, D. (2010) Engineering of biotin-prototrophy in Pichia pastoris for robust production processes, Metab. Eng., 12, 573-580, https://doi.org/10.1016/j.ymben.2010.07.002.

    Article  CAS  PubMed  Google Scholar 

  16. Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114-2120, https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., and Davey, R. P. (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics, Front. Genet., 4, 288, https://doi.org/10.3389/fgene.2013.00288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 37, 907-915, https://doi.org/10.1038/s41587-019-0201-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. (2021) Twelve years of SAMtools and BCFtools, GigaScience, 10, giab008, https://doi.org/10.1093/gigascience/giab008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao, Y., Smyth, G. K., and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30, 923-930, https://doi.org/10.1093/bioinformatics/btt656.

    Article  CAS  PubMed  Google Scholar 

  21. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, C., Ma, Y., Miao, H., Tang, X., Xu, B., Wu, Q., Mu, Y., and Huang, Z. (2020) Transcriptomic Analysis of Pichia pastoris (Komagataella phaffii) GS115 during heterologous protein production using a high-cell-density fed-batch cultivation strategy, Front. Microbiol., 11, 463, https://doi.org/10.3389/fmicb.2020.00463.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brady, J. R., Whittaker, C. A., Tan, M. C., Kristensen, D. L., 2nd, Ma, D., Dalvie, N. C., Love, K. R., and Love, J. C. (2020) Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain, Biotechnol. Bioeng., 117, 543-555, https://doi.org/10.1002/bit.27209.

    Article  CAS  PubMed  Google Scholar 

  24. Love, K. R., Shah, K. A., Whittaker, C. A., Wu, J., Bartlett, M. C., Ma, D., Leeson, R. L., Priest, M., Borowsky, J., Young, S. K., and Love, J. C. (2016) Comparative genomics and transcriptomics of Pichia pastoris, BMC Genomics, 17, 550, https://doi.org/10.1186/s12864-016-2876-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pirner, H. M., and Stolz, J. (2006) Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin–protein ligase, J. Biol. Chem., 281, 12381-12389, https://doi.org/10.1074/jbc.M511075200.

    Article  CAS  PubMed  Google Scholar 

  26. Weider, M., Machnik, A., Klebl, F., and Sauer, N. (2006) Vhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5, J. Biol. Chem., 281, 13513-13524, https://doi.org/10.1074/jbc.M512158200.

    Article  CAS  PubMed  Google Scholar 

  27. Kowalska, E., Kujda, M., Wolak, N., and Kozik, A. (2012) Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress, FEMS Yeast Res., 12, 534-546, https://doi.org/10.1111/j.1567-1364.2012.00804.x.

    Article  CAS  PubMed  Google Scholar 

  28. Wolak, N., Kowalska, E., Kozik, A., and Rapala-Kozik, M. (2014) Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes, FEMS Yeast Res., 14, 1249-1262, https://doi.org/10.1111/1567-1364.12218.

    Article  CAS  PubMed  Google Scholar 

  29. Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W., and Holzer, H. (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae, Eur. J. Biochem., 10, 83-89, https://doi.org/10.1111/j.1432-1033.1969.tb00658.x.

    Article  CAS  PubMed  Google Scholar 

  30. Berg, M. A., and Steensma, H. Y. (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose, Eur. J. Biochem., 231, 704-713, https://doi.org/10.1111/j.1432-1033.1995.tb20751.x.

    Article  PubMed  Google Scholar 

  31. Takahashi, H., McCaffery, J. M., Irizarry, R. A., and Boeke, J. D. (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription, Mol. Cell, 23, 207-217, https://doi.org/10.1016/j.molcel.2006.05.040.

    Article  CAS  PubMed  Google Scholar 

  32. Strijbis, K., and Distel, B. (2010) Intracellular acetyl unit transport in fungal carbon metabolism, Eukaryot. Cell, 9, 1809-1815, https://doi.org/10.1128/EC.00172-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madsen, C. T., Sylvestersen, K. B., Young, C., Larsen, S. C., Poulsen, J. W., Andersen, M. A., Palmqvist, E. A., Hey-Mogensen, M., Jensen, P. B., Treebak, J. T., Lisby, M., and Nielsen, M. L. (2015) Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p, Nat. Commun., 6, 7726, https://doi.org/10.1038/ncomms8726.

    Article  PubMed  Google Scholar 

  34. Kurita, O., and Nishida, Y. (1999) Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae, FEMS Microbiol Lett., 181, 281-287, https://doi.org/10.1111/j.1574-6968.1999.tb08856.x.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, N. V., and Rangarajan, P. N. (2011) Catabolite repression of phosphoenolpyruvate carboxykinase by a zinc finger protein under biotinand pyruvate carboxylase-deficient conditions in Pichia pastoris, Microbiology, 157, 3361-3369, https://doi.org/10.1099/mic.0.053488-0.

    Article  CAS  Google Scholar 

  36. Kumar, N. V., and Rangarajan, P. N. (2012) The zinc finger proteins Mxr1p and repressor of phosphoenolpyruvate carboxykinase (ROP) have the same DNA binding specificity but regulate methanol metabolism antagonistically in Pichia pastoris, J. Biol. Chem., 287, 34465-34473, https://doi.org/10.1074/jbc.M112.365304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kern, A., Hartner, F. S., Freigassner, M., Spielhofer, J., Rumpf, C., Leitner, L., Fröhlich, K. U., and Glieder, A. (2007) Pichia pastoris ‘just in time’ alternative respiration, Microbiology, 153, 1250-1260, https://doi.org/10.1099/mic.0.2006/001404-0.

    Article  CAS  PubMed  Google Scholar 

  38. DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278, 680-686, https://doi.org/10.1126/science.278.5338.680.

    Article  CAS  PubMed  Google Scholar 

  39. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, 11, 4241-4257, https://doi.org/10.1091/mbc.11.12.4241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gasch, A. P. (2003) “The environmental stress response: a common yeast response to environmental stresses”, in Yeast Stress Responses (Hohmann, S., and Mager, W. H., eds) Vol. 1, Springer, Berlin, pp. 11-70.

  41. Couderc, R., and Baretti, J. (1980) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of alcohol oxidase, Agrie. Biol. Chem., 44, 2279-2289, https://doi.org/10.1080/00021369.1980.10864320.

    Article  CAS  Google Scholar 

  42. Avery, A. M., and Avery, S. V. (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases, J. Biol. Chem., 276, 33730-33735, https://doi.org/10.1074/jbc.M105672200.

    Article  CAS  PubMed  Google Scholar 

  43. Lin, N. X., He, R. Z., Xu, Y., and Yu, X. W. (2021) Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris, Biotechnol. Biofuels, 14, 160, https://doi.org/10.1186/s13068-021-02013-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in accordance with agreement no. 075-15-2022-322, April 22, 2022 on providing a grant in the form of subsidies from the Federal budget of the Russian Federation. The grant was provided for State support for creation and development of a world-class Scientific Center “Agrotechnologies for the Future”.

Author information

Authors and Affiliations

Authors

Contributions

A.M.R., M.V.P. – conceived and supervised the study; A.S.M., V.V.I. – carried out experiments; A.V.S. – performed a bioinformatic analysis; A.S.M., A.M.R. – discussed the results of experiments with input from all authors; A.S.M., A.M.R. – wrote the manuscript; A.M.R. and M.V.P. – edited the manuscript.

Corresponding author

Correspondence to Andrey M. Rumyantsev.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies involving human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeeva, .S., Sidorin, A.V., Ishtuganova, V.V. et al. Effect of Biotin Starvation on Gene Expression in Komagataella phaffii Cells. Biochemistry Moscow 88, 1368–1377 (2023). https://doi.org/10.1134/S000629792309016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792309016X

Keywords

Navigation