Skip to main content
Log in

Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effect of Zn2+ on the P-side of proteoliposomes containing membrane-incorporated Rhodobacter sphaeroides cytochrome c oxidase was investigated by the time-resolved electrometrics following a single electron injection into the enzyme prepared in the F state. The wild-type enzyme was examined along with the two mutants, N139D and D132N. All obtained data indicate that the primary effect of Zn2+ added from the P-side of the membrane is slowing of the pumped proton release from the proton loading site (PLS) to the bulk aqueous phase on the P-side of the membrane. The results strongly suggest the presence of two pathways by which the pumped proton can exit the protein from the PLS and of two separate binding sites for Zn2+. A model is presented to explain the influence of Zn2+ on the kinetics of membrane-potential generation by the wild-type COX, as well as by the N139D and D132N mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Abbreviations

COX:

cytochrome c oxidase

F, O, and P:

states of cytochrome c oxidase, respectively

P- and N-phases:

positively and negatively charged aqueous phases, respectively separated by the coupling membrane

Rubpy:

tris-bipyridyl complex of ruthenium(II)

References

  1. Ferguson-Miller, S., and Babcock, G. T. (1996) Heme/copper terminal oxidases, Chem. Rev., 7, 2889-2907.

    Article  Google Scholar 

  2. Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci. (Landmark Ed), 18, 36-57.

    Article  CAS  Google Scholar 

  3. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, doi: https://doi.org/10.1134/S0006297919110130.

    Article  CAS  Google Scholar 

  4. Wikstrom, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271-273.

    Article  CAS  Google Scholar 

  5. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, 376, 660-669.

    Article  CAS  Google Scholar 

  6. Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science, 272, 1136-1144.

    Article  CAS  Google Scholar 

  7. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides., J. Mol. Biol., 321, 329-339.

    Article  CAS  Google Scholar 

  8. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090.

    Article  CAS  Google Scholar 

  9. Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separation during the ferryl-oxo → oxidized transition in a non-pumping mutant of cytochrome c oxidase., J. Biol. Chem., 279, 52558-52565.

    Article  CAS  Google Scholar 

  10. Han, D., Namslauer, A., Pawate, A. S., Morgan, J. E., Nagy, S., et al. (2006) Replacing Asn207 by aspartate at the neck of the D channel in the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides results in decoupling the proton pump, Biochemistry, 45, 14064-14074.

    Article  CAS  Google Scholar 

  11. Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060-3073, doi: https://doi.org/10.1021/bi901719e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. T. (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244, Science, 290, 1588-1591.

    Article  CAS  Google Scholar 

  13. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476-488, doi: https://doi.org/10.1016/j.bbabio.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  14. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed), 22, 1379-1426.

    Article  CAS  Google Scholar 

  15. Shirey, K., Stover, K. R., Cleary, J., Hoang, N., and Hosler, J. (2016) Membrane-anchored cyclic peptides as effectors of mitochondrial oxidative phosphorylation, Biochemistry, 55, 2100-2111, doi: https://doi.org/10.1021/acs.biochem.5b01368.

    Article  CAS  PubMed  Google Scholar 

  16. Frederickson, C. J., and Bush, A. I. (2001) Synaptically released zinc: physiological functions and pathological effects, Biometals, 14, 353-366, doi: https://doi.org/10.1023/a:1012934207456.

    Article  CAS  PubMed  Google Scholar 

  17. Fudge, D. H., Black, R., Son, L., LeJeune, K., and Qin, Y. (2018) Optical recording of Zn(2+) dynamics in the mitochondrial matrix and intermembrane space with the GZnP2 sensor, ACS Chem. Biol., 13, 1897-1905, doi: https://doi.org/10.1021/acschembio.8b00319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheline, C. T., Behrens, M. M., and Choi, D. W. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis, J. Neurosci., 20, 3139-3146.

    Article  CAS  Google Scholar 

  19. Gazaryan, I. G., Krasnikov, B. F., Ashby, G. A., Thorneley, R. N., Kristal, B. S., and Brown, A. M. (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase, J. Biol. Chem., 277, 10064-10072, doi: https://doi.org/10.1074/jbc.M108264200.

    Article  CAS  PubMed  Google Scholar 

  20. Sharpley, M. S., and Hirst, J. (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+, J. Biol. Chem., 281, 34803-34809, doi: https://doi.org/10.1074/jbc.M607389200.

    Article  CAS  PubMed  Google Scholar 

  21. Link, T. A., and von Jagow, G. (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group, J. Biol. Chem., 270, 25001-25006, doi: https://doi.org/10.1074/jbc.270.42.25001.

    Article  CAS  PubMed  Google Scholar 

  22. Schulte, M., Mattay, D., Kriegel, S., Hellwig, P., and Friedrich, T. (2014) Inhibition of Escherichia coli respiratory complex I by Zn(2+), Biochemistry, 53, 6332-6339, doi: https://doi.org/10.1021/bi5009276.

    Article  CAS  PubMed  Google Scholar 

  23. Mills, D. A., Schmidt, B., Hiser, C., Westley, E., and Ferguson-Miller, S. (2002) Membrane potential-controlled inhibition of cytochrome c oxidase by zinc, J. Biol. Chem., 277, 14894-14901.

    Article  CAS  Google Scholar 

  24. Kuznetsova, S. S., Azarkina, N. V., Vygodina, T. V., Siletsky, S. A., and Konstantinov, A. A. (2005) Zink ions as cytochrome c oxidase inhibitors: two sites of action, Biochemistry (Moscow), 70, 128-136.

    Article  CAS  Google Scholar 

  25. Lee, H. J., and Adelroth, P. (2013) The heme-copper oxidase superfamily shares a Zn2+-binding motif at the entrance to a proton pathway, FEBS Lett., 587, 770-774, doi: https://doi.org/10.1016/j.febslet.2013.01.069.

    Article  CAS  PubMed  Google Scholar 

  26. Aagaard, A., and Brzezinski, P. (2001) Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen, FEBS Lett., 494, 157-160.

    Article  CAS  Google Scholar 

  27. Francia, F., Giachini, L., Boscherini, F., Venturoli, G., Capitanio, G., et al. (2007) The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase, FEBS Lett., 581, 611-616.

    Article  CAS  Google Scholar 

  28. Kannt, A., Ostermann, T., Muller, H., and Ruitenberg, M. (2001) Zn2+ binding to the cytoplasmic side of Paracoccus denitrificans cytochrome c oxidase selectively uncouples electron transfer and proton translocation, FEBS Lett., 503, 142-146.

    Article  CAS  Google Scholar 

  29. Nicholls, P., and Singh, A. P. (1988) Effect of zinc on proteoliposomal cytochrome oxidase, Life Sci. Adv. (Biochemistry, Delhi), 7, 321-326.

    Google Scholar 

  30. Vygodina, T. V., Zakirzyanova, W., and Konstantinov, A. A. (2008) Inhibition of membrane-bound cytochrome c oxidase by zinc ions: High-affinity Zn(2+)-binding site at the P-side of the membrane, FEBS Lett., 582, 4158-4162.

    Article  CAS  Google Scholar 

  31. Faxen, K., Salomonsson, L., Adelroth, P., and Brzezinski, P. (2006) Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 388-394.

    Article  CAS  Google Scholar 

  32. Mitchell, D. M., and Gennis, R. B. (1995) Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni2+-NTA affinity chromatography, FEBS Lett., 368, 148-150.

    Article  CAS  Google Scholar 

  33. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853-4861.

    Article  CAS  Google Scholar 

  34. Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., et al. (1999) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear centre, FEBS Lett., 457, 98-102.

    Article  CAS  Google Scholar 

  35. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb'-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817.

    Article  CAS  Google Scholar 

  36. Siletsky, S. A., Belevich, I., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH→EH transition of the aberrant ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201-205.

    Article  CAS  Google Scholar 

  37. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162-1169, doi: https://doi.org/10.1016/j.bbabio.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  38. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, doi: https://doi.org/10.1371/journal.pone.0095617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, doi: https://doi.org/10.1371/journal.pone.0155186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., et al. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324.

    Article  CAS  Google Scholar 

  41. Zaslavsky, D., Kaulen, A., Smirnova, I. A., Vygodina, T. V., and Konstantinov, A. A. (1993) Flash-induced membrane potential generation by cytochrome c oxidase, FEBS Lett., 336, 389-393.

    Article  CAS  Google Scholar 

  42. Zaslavsky, D. L., Smirnova, I. A., Siletsky, S. A., Kaulen, A. D., Millett, F., and Konstantinov, A. A. (1995) Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor, FEBS Lett., 359, 27-30.

    Article  CAS  Google Scholar 

  43. Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383-1392, doi: https://doi.org/10.1016/j.bbabio.2007.09.010.

    Article  CAS  PubMed  Google Scholar 

  44. Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikstrom, M. (2013) The fifth electron in the fully reduced caa(3) from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1-9, doi: https://doi.org/10.1016/j.bbabio.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  45. Kalaidzidis, Y. L., Gavrilov, A. V., Zaitsev, P. V., Korolev, E. V., and Kalaidzidis, A. L. (1997) PLUK- an environment for software development, Progr. Comp. Soft., 23, 206-211.

    Google Scholar 

  46. Mamedov, M. D., Tyunyatkina, A. A., Siletsky, S. A., and Semenov, A. Y. (2006) Voltage changes involving photosystem II quinone-iron complex turnover, Eur. Biophys. J., 35, 647-654.

    Article  CAS  Google Scholar 

  47. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., et al. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741-1750, doi: https://doi.org/10.1016/j.bbabio.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  48. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., et al. (2019) Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioenerg., 1860, 1-11, doi: https://doi.org/10.1016/j.bbabio.2018.09.365.

    Article  CAS  PubMed  Google Scholar 

  49. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikstrom, M. (2017) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta, 1858, 915-926, doi: https://doi.org/10.1016/j.bbabio.2017.08.007.

    Article  CAS  Google Scholar 

  50. Medvedev, D. M., Medvedev, E. S., Kotelnikov, A. I., and Stuchebrukhov, A. A. (2005) Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection., Biochim. Biophys. Acta, 1710, 47-56.

    Article  CAS  Google Scholar 

  51. Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., et al. (2006) Single-electron photoreduction of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122-1132, doi: https://doi.org/10.1016/j.bbabio.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  52. Vygodina, T. V., and Konstantinov, A. A. (1988) H2O2-induced conversion of cytochrome c oxidase peroxy complex to oxoferryl state, Ann. NY Acad. Sci., 550, 124-138.

    Article  CAS  Google Scholar 

  53. Sugitani, R., and Stuchebrukhov, A. A. (2009) Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport, Biochim. Biophys. Acta, 1787, 1140-1150.

    Article  CAS  Google Scholar 

  54. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Inoue, N., et al. (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase, Science, 280, 1723-1729.

    Article  CAS  Google Scholar 

  55. Mills, D. A., and Ferguson-Miller, S. (2002) Influence of structure, pH and membrane potential on proton movement in cytochrome oxidase, Biochim. Biophys. Acta, 1555, 96-100.

    Article  CAS  Google Scholar 

  56. Popovic, D. M., and Stuchebrukhov, A. A. (2005) Proton exit channels in bovine cytochrome c oxidase, J. Phys. Chem. B, 109, 1999-2006, doi: https://doi.org/10.1021/jp0464371.

    Article  CAS  PubMed  Google Scholar 

  57. Muramoto, K., Hirata, K., Shinzawa-Itoh, K., Yoko-o, S., Yamashita, E., et al. (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 104, 7881-7886.

    Article  CAS  Google Scholar 

  58. Qin, L., Mills, D. A., Hiser, C., Murphree, A. R., Garavito, M., et al. (2007) Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase, Biochemistry, 46, 6239-6248.

    Article  CAS  Google Scholar 

  59. Klishin, S. S., Junge, W., and Mulkidjanian, A. Y. (2002) Flash-induced turnover of the cytochrome bc1 complex in chromatophores of Rhodobacter capsulatus: binding of Zn2+ decelerates likewise the oxidation of cytochrome b, the reduction of cytochrome c1 and the voltage generation, Biochim. Biophys. Acta, 1553, 177-182, doi: https://doi.org/10.1016/s0005-2728(01)00250-x.

    Article  CAS  PubMed  Google Scholar 

  60. Mulkidjanian, A. Y. (2005) Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting, Biochim. Biophys. Acta, 1709, 5-34, doi: https://doi.org/10.1016/j.bbabio.2005.03.009.

    Article  CAS  PubMed  Google Scholar 

  61. Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers, Proc. Natl. Acad. Sci. USA, 97, 1542-1547, doi: https://doi.org/10.1073/pnas.97.4.1542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ilya Oleynikov for technical assistance in the production of Fig. 10. The authors express their gratitude to anonymous Reviewers, especially to the Reviewer 2 and Reviewer 3.

Funding

This work was supported by the Russian Science Foundation (research project no. 19-14-00063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Siletsky.

Ethics declarations

The authors declare no conflict of interests in financial or any other field. This article does not contain descriptions of studies performed by authors with the participation of humans or using animals as objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siletsky, S.A., Gennis, R.B. Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. Biochemistry Moscow 86, 105–122 (2021). https://doi.org/10.1134/S0006297921010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921010107

Keywords

Navigation