Skip to main content
Log in

Mitochondrial Translation Initiation Factor 3: Structure, Functions, Interactions, and Implication in Human Health and Disease

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mitochondria are essential organelles of eukaryotic cell that provide its respiratory function by means of the electron transfer chain. Expression of mitochondrial genes is organized in a bacterial-like manner; however multiple evolutionary differences are observed between the two systems, including translation initiation machinery. This review is dedicated to the mitochondrial translation initiation factor 3 (IF3mt), which plays a key role in the protein synthesis in mitochondria. Involvement of IF3mt in human health and disease is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTD:

C-terminal domain

CTE:

C-terminal extension

fMet:

formylmethionine

IF3mt:

mitochondrial translation initiation factor 3

LSU:

large subunit

NC:

normal chow

NTD:

N-terminal domain

NTE:

N-terminal extension

PA:

physically active

PD:

Parkinson’s disease

SED:

sedentary

SSU:

small subunit

TACO1:

translational activator of cytochrome c oxidase 1

TUFM:

thermo-unstable elongation factor, mitochondrial

WD:

Western diet

References

  1. Calvo, S. E., and Mootha, V. K. (2010) The mitochondrial pro- teome and human disease, Annu. Rev. Genomics Hum. Genet., 11, 25–44, doi:https://doi.org/10.1146/annurev-genom-082509-141720.

    Article  CAS  Google Scholar 

  2. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome, Nature, 290, 457–465, doi:https://doi.org/10.1038/290457a0.

    Article  CAS  Google Scholar 

  3. Christian, B. E., and Spremulli, L. L. (2012) Mechanism of protein biosynthesis in mammalian mitochondria, Biochim. Biophys. Acta, 1819, 1035–1054, doi:https://doi.org/10.1016/j.bbagrm.2011.11.009.

    Article  CAS  Google Scholar 

  4. Amunts, A., Brown, A., Toots, J., Scheres, S. H., and Ramakrishnan, V. (2015) The structure of the human mitochondrial ribosome, Science, 348, 95–98, doi:https://doi.org/10.1126/science.aaa1193.

    Article  CAS  Google Scholar 

  5. Montoya, J., Ojala, D., and Attardi, G. (1981) Distinctive features of the 5’-terminal sequences of the human mitochondrial mRNAs, Nature, 290, 465–470, doi:https://doi.org/10.1038/290465a0.

    Article  CAS  Google Scholar 

  6. Salinas-Giege, T., Giege, R., and Giege, P. (2015) tRNA biology in mitochondria, Int. J. Mol. Sci., 16, 4518–4559, doi: https://doi.org/10.3390/ijms16034518.

    Article  CAS  Google Scholar 

  7. Kuzmenko, A., Atkinson, G. C., Levitskii, S., Zenkin, N., Tenson, T., Hauryliuk, V., and Kamenski, P. (2014) Mitochondrial translation initiation machinery: conservation and diversification, Biochimie, 100, 132–140, doi: https://doi.org/10.1016/j.biochi.2013.07.024.

    Article  CAS  Google Scholar 

  8. Biou, V., Shu, F., and Ramakrishnan, V. (1995) X-ray crys- tallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix, EMBO J., 14, 4056–4064.

    Article  CAS  Google Scholar 

  9. Petrelli, D., LaTeana, A., Garofalo, C., Spurio, R., Pon, C. L., and Gualerzi, C. O. (2001) Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J., 20, 4560–4569, doi:https://doi.org/10.1093/emboj/20.16.4560.

    Article  CAS  Google Scholar 

  10. Ayyub, S. A., Dobriyal, D., and Varshney, U. (2017) Contributions of the N- and C-terminal domains of initiation factor 3 to its functions in the fidelity of initiation and antiassociation of the ribosomal subunits, J. Bacteriol., 199, 1–12, doi:https://doi.org/10.1128/JB.00051-17.

    Article  Google Scholar 

  11. Koc, E. C., and Spremulli, L. L. (2002) Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs, J. Biol. Chem., 277, 35541–35549, doi: https://doi.org/10.1074/jbc.M202498200.

    Article  CAS  Google Scholar 

  12. Haque, M. E., and Spremulli, L. L. (2008) Roles of the N- and C-terminal domains of mammalian mitochondrial initiation factor 3 in protein biosynthesis, J. Mol. Biol., 384, 929–940, doi:https://doi.org/10.1016/j.jmb.2008.09.077.

    Article  CAS  Google Scholar 

  13. Brown, A., Amunts, A., Bai, X. C., Sugimoto, Y., Edwards, P. C., Murshudov, G., Scheres, S. H., and Ramakrishnan, V. (2014) Structure of the large ribosomal subunit from human mitochondria, Science, 346, 718–722, doi: https://doi.org/10.1126/science.1258026.

    Article  CAS  Google Scholar 

  14. Bhargava, K., and Spremulli, L. L. (2005) Role of the N- and C-terminal extensions on the activity of mammalian mitochondrial translational initiation factor 3, Nucleic Acids Res., 33, 7011–7018, doi:https://doi.org/10.1093/nar/gki1007.

    Article  CAS  Google Scholar 

  15. Haque, M. E., Grasso, D., and Spremulli, L. L. (2008) The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt, Nucleic Acids Res., 36, 589–597, doi: https://doi.org/10.1093/nar/gkm1072.

    Article  CAS  Google Scholar 

  16. Yu, N. J., and Spremulli, L. L. (1998) Regulation of the activity of chloroplast translational initiation factor 3 by NH2- and COOH-terminal extensions, J. Biol. Chem., 273, 3871–3877, doi:https://doi.org/10.1074/jbc.273.7.3871.

    Article  CAS  Google Scholar 

  17. Derbikova, K., Kuzmenko, A., Levitskii, S., Klimontova, M., Chicherin, I., Baleva, M. V., Krasheninnikov, I. A., and Kamenski, P. (2018) Biological and evolutionary significance of terminal extensions of mitochondrial translation initiation factor 3, Int. J. Mol. Sci., 19, 1–15, doi: https://doi.org/10.3390/ijms19123861.

    Article  Google Scholar 

  18. Christian, B. E., and Spremulli, L. L. (2009) Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria, Biochemistry, 48, 3269–3278, doi: https://doi.org/10.1021/bi8023493.

    Article  CAS  Google Scholar 

  19. Hussain, T., Llacer, J. L., Wimberly, B. T., Kieft, J. S., and Ramakrishnan, V. (2016) Large-scale movements of IF3 and tRNA during bacterial translation initiation, Cell, 167, 133–144, doi:https://doi.org/10.1016/j.cell.2016.08.074.

    Article  CAS  Google Scholar 

  20. Haque, M. E., Koc, H., Cimen, H., Koc, E. C., and Spremulli, L. L. (2011) Contacts between mammalian mitochondrial translational initiation factor 3 and ribosomal proteins in the small subunit, Biochim. Biophys. Acta, 1814, 1779–1784, doi:https://doi.org/10.1016/j.bbapap.2011.09.013.

    Article  CAS  Google Scholar 

  21. Koripella, R. K., Sharma, M. R., Haque, M. E., Risteff, P., Spremulli, L. L., and Agrawal, R. K. (2019) Structure of human mitochondrial translation initiation factor 3 bound to the small ribosomal subunit, Science, 12, 76–86, doi: https://doi.org/10.1016/j.isci.2018.12.030.

    CAS  Google Scholar 

  22. Lopez-Alonso, J. P., Fabbretti, A., Kaminishi, T., Iturrioz, I., Brandi, L., Gil-Carton, D., Gualerzi, C. O., Fucini, P., and Connell, S. R. (2017) Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways, Nucleic Acids Res., 45, 2179–2187, doi:https://doi.org/10.1093/nar/gkw1251.

    Article  CAS  Google Scholar 

  23. Lee, D. E., Brown, J. L., Rosa, M. E., Brown, L. A., Perry, R. A., Washington, T. A., and Greene, N. P. (2016) Translational machinery of mitochondrial mRNA is promoted by physical activity in Western diet-induced obese mice, Acta Physiol. (Oxf.), 218, 167–177, doi:https://doi.org/10.1111/apha.12687.

    Article  CAS  Google Scholar 

  24. Yokokawa, T., Kido, K., Suga, T., Isaka, T., Hayashi, T., and Fujita, S. (2018) Exercise-induced mitochondrial biogenesis coincides with the expression of mitochondrial translation factors in murine skeletal muscle, Physiol. Rep., 6, 1–13, doi:https://doi.org/10.14814/phy2.13893.

    Article  Google Scholar 

  25. Gaweda-Walerych, K., and Zekanowski, C. (2013) The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s dis- ease, Curr. Genomics, 14, 543–559, doi:https://doi.org/10.2174/1389202914666131210211033.

    Article  CAS  Google Scholar 

  26. Abahuni, N., Gispert, S., Bauer, P., Riess, O., Kruger, R., Becker, T., and Auburger, G. (2007) Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson’s disease, Neurosci. Lett., 414, 126–129, doi: https://doi.org/10.1016/j.neulet.2006.12.053.

    Article  CAS  Google Scholar 

  27. Behrouz, B., Vilarino-Guell, C., Heckman, M. G., Soto-Ortolaza, A. I., Aasly, J. O., Sando, S., Lynch, T., Craig, D., Uitti, R. J., Wszolek, Z. K., Ross, O. A., and Farrer, M. J. (2010) Mitochondrial translation initiation factor 3 polymorphism and Parkinson’s disease, Neurosci. Lett., 486, 228–230, doi:https://doi.org/10.1016/j.neulet.2010.09.059.

    Article  CAS  Google Scholar 

  28. Anvret, A., Ran, C., Westerlund, M., Thelander, A. C., Sydow, O., Lind, C., Hakansson, A., Nissbrandt, H., Galter, D., and Belin, A. C. (2010) Possible involvement of a mitochondrial translation initiation factor 3 variant causing decreased mRNA levels in Parkinson’s disease, Parkinson’s Dis., 2010, 1–5, doi:https://doi.org/10.4061/2010/491751.

    Article  Google Scholar 

  29. Kuzmenko, A., Derbikova, K., Salvatori, R., Tankov, S., Atkinson, G. C., Tenson, T., Ott, M., Kamenski, P., and Hauryliuk, V. (2016) Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein syn- thesis, Sci. Rep., 6, 1–9, doi:https://doi.org/10.1038/srep18749.

    Article  Google Scholar 

Download references

Funding

The work was funded by the Russian Science Foundation (project 18-74-00016); the work of E.B.D. was financially supported by the State Basic Research Program no. 0108-2019-004 for the Institute of Developmental Biology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Chicherin.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Compliance with ethical standards. This article does not contain description of studies involving animals or human participants performed by any of the authors.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 10, pp. 1401-1409

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chicherin, I.V., Baleva, M.V., Levitskii, S.A. et al. Mitochondrial Translation Initiation Factor 3: Structure, Functions, Interactions, and Implication in Human Health and Disease. Biochemistry Moscow 84, 1143–1150 (2019). https://doi.org/10.1134/S0006297919100031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919100031

Keywords

Navigation