Skip to main content
Log in

Adaptive epibiochemistry and epigenetics

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Enzymatic reactions of post-synthetic modification of macromolecules occur in the cells of all organisms. These reactions, which can be designated as epibiochemical, are of a special type and, as discriminated from reactions with low molecular weight substrates, occur on the level of biopolymers, causing their covalent modification. The majority of epibiochemical modifications of proteins, DNA, and RNA are reversible and are carried out by modification transferases and demodification enzymes, respectively. Epibiochemical, i.e. those located above the low molecular weight metabolites, modifications of proteins and nucleic acids perform various functions, including participation in molecular mechanisms of adaptive epigenetic heredity. This paper presents an overview of some adaptive epibiochemical modifications of macromolecules and the adaptive epigenetic processes on their basis. The features of epigenetic inheritance of acquired characteristics and the limits of biological evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CpHpG:

(H = A, T, or C)

CpWpG:

(W = A or T)

ebc-modifications:

epibiochemical modifications

HSP:

heat shock proteins

m5C:

5-methylcytosine

MGE:

mobile genetic elements

References

  1. Mitin, M. B. (1948) in About Situation in the Biological Science [in Russian], OGIZ-SELKhOZGIZ, Moscow, p. 225.

    Google Scholar 

  2. Crick, F. (1960) Structure of DNA, in Chemical Bases of Heredity (Knunyants, I. L., and Sidorov, B. N., eds.) [Russian translation], Inostrannaya Literatura, Moscow, pp. 428–432.

    Google Scholar 

  3. Lysenko, T. D. (1948) in About Situation in the Biological Science [in Russian], OGIZ-SELKhOZGIZ, Moscow, p. 14.

    Google Scholar 

  4. Steel, E. J., Lindley, R. A., and Blanden, R. V. (2002) What if Lamarck Is Right? Immunogenetics and Evolution [Russian translation], Mir, Moscow.

    Google Scholar 

  5. Sano, H. (2010) Inheritance of acquired traits in plants, Plant Signal. Behav., 5, 346–348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Newsholme, E. A., and Crabtree, B. (1973) Metabolic aspects of enzyme activity regulation, Symp. Soc. Exp. Biol., 27, 429–460.

    CAS  PubMed  Google Scholar 

  7. Soderling, T. R. (1982) Role of hormones and protein phosphorylation in metabolic regulation, Fed. Proc., 41, 2615–2617.

    CAS  PubMed  Google Scholar 

  8. Wu, C. (1995) Heat shock transcription factors: structure and regulation, Ann. Rev. Cell Dev. Biol., 11, 441–469.

    Article  CAS  Google Scholar 

  9. Xu, D., Zalmas, L. P., and La Thangue, N. B. (2008) A transcription cofactor required for the heat-shock response, EMBO Rep., 9, 662–669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schlesinger, M. J. (1990) Heat shock proteins, J. Biol. Chem., 265, 12111–12114.

    CAS  PubMed  Google Scholar 

  11. Spena, A., Hain, R., Ziervogel, U., Saedler, H., and Schell, J. (1985) Construction of heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants, EMBO J., 4, 2739–2743.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Nishikawa, M., Takemoto, S., and Takakura, Y. (2008) Heat shock protein derivatives for delivery of antigens to antigen presenting cells, Int. J. Pharm., 354, 23–27.

    Article  CAS  PubMed  Google Scholar 

  13. Tremolada, L., Magni, F., Valsecchi, C., Sarto, C., Mocarelli, P., Perego, R., Cordani, N., Favini, P., Kienle, G. M., Sanchez, J. C., Hochstrasser, D. F., and Corthals, G. L. (2005) Characterization of heat shock protein 27 phosphorylation sites in renal cell carcinoma, Proteomics, 5, 788–795.

    Article  CAS  PubMed  Google Scholar 

  14. Hochstrasser, M. (2009) Origin and function of ubiquitinlike proteins, Nature, 458, 422–429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Appella, E., and Anders, C. W. (2001) Post-translational modifications and activation of p53 by genotoxic stresses, Eur. J. Biochem., 268, 2764–2772.

    Article  CAS  PubMed  Google Scholar 

  16. Prives, C., and Hall, P. A. (1999) The p53 pathway, J. Pathol., 187, 112–126.

    Article  CAS  PubMed  Google Scholar 

  17. Ovchinnikov, L. P., Skabkin, M. A., Ruzanov, P. V., and Evdokimova, V. M. (2001) Major mRNP proteins in the structural organization and functioning of mRNA in the cells of eukaryotes, Mol. Biol. (Moscow), 35, 548–558.

    Article  CAS  Google Scholar 

  18. Skabkin, M. A., Skabkina, O. V., and Ovchinnikov, L. P. (2004) Multifunctional proteins with cold shock domain in the regulation of gene expression, Usp. Biol. Khim., 44, 3–52.

    CAS  Google Scholar 

  19. Evdokimova, V., Ruzanov, P., Anglezio, M. S., Sorokin, A. V., Ovchinnikov, L. P., Buckley, J., Triche, T. J., Sonenberg, N., and Sorensen, P. H. (2006) Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species, Mol. Cell. Biol., 26, 277–292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Liu, L., Yim, H., Choi, J. H., Kim, S. T., Jin, Y., and Lee, S. K. (2014) ATM kinase promotes both caspase-8 and caspase-9 activation during TNF-a-induced apoptosis of HeLa cells, FEBS Lett., 588, 929–935.

    Article  CAS  PubMed  Google Scholar 

  21. Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls, Genes Dev., 13, 1211–1233.

    Article  CAS  PubMed  Google Scholar 

  22. Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program, Cell Death Differ., 11, 372–380.

    Article  CAS  PubMed  Google Scholar 

  23. Clemens, M. J. (2001) Initiation factor eIF2a phosphorylation in stress responses and apoptosis, Prog. Mol. Subcell. Biol., 27, 57–89.

    Article  CAS  PubMed  Google Scholar 

  24. Sonenberg, N., and Gingras, A. C. (1998) The mRNA 5'cap-binding protein eIF4E and control of cell growth, Curr. Opin. Cell. Biol., 10, 268–275.

    Article  CAS  PubMed  Google Scholar 

  25. Zorina, A. A., Mironov, K. S., Stepanchenko, N. S., Sinetova, M. A., Koroban, N. V., Zinchenko, V. V., Kupriyanova, E. V., Allakhverdiev, S. I., and Los, D. A. (2011) Regulation systems of stress responses in cyanobacteria, Rus. J. Plant Physiol., 58, 749–767.

    Article  CAS  Google Scholar 

  26. Alon, U., Surette, M. G., Barkai, N., and Leibler, S. (1999) Robustness in bacterial chemotaxis, Nature, 397, 168–171.

    Article  CAS  PubMed  Google Scholar 

  27. Olsson, M., and Lindahl, T. J. (1980) Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6methylguanine to a protein cysteine residue, J. Biol. Chem., 255, 10569–10571.

    CAS  PubMed  Google Scholar 

  28. Pegg, A. E. (2011) Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools, Chem. Res. Toxicol., 16, 618–639.

    Article  CAS  Google Scholar 

  29. Chumakov, P. M. (2007) The protein p53 and its universal functions in the multicellular organism, Usp. Biol. Khim., 47, 3–52.

    CAS  Google Scholar 

  30. Bjork, G. R. (1995) Biosynthesis and function of modified nucleosides, in tRNA: Structure, Biosynthesis, and Function (Soll, D., and RajBhandary, U., eds.) ASM Press, Washington, D.C., pp. 165–206.

    Chapter  Google Scholar 

  31. Yi, C., and Pan, T. (2011) Cellular dynamics of RNA modification, Acc. Chem. Res., 44, 1380–1388.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, X. E., and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398.

    Article  CAS  PubMed  Google Scholar 

  33. Kiani, J., Grandjean, V., Liebers, R., Tuorto, F., Ghanbarian, H., Lyko, F., Cuzin, F., and Rassoulzadegan, M. (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2, PLoS Genet., 9, e1003498.

  34. Anton, B. P., Saleh, L., Jack, S., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli, Proc. Natl. Acad. Sci. USA, 105, 1826–1831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Cundlife, E. (1989) How antibiotic-producing microorganisms avoid suicide, Ann. Rev. Microbiol., 43, 207–233.

    Article  Google Scholar 

  36. Meyer, K. D., and Jaffrey, S. R. (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control, Nat. Rev. Mol. Cell Biol., 15, 313–326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M., and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023–5033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J. G., Odom, D. T., Ule, J., and Frye, M. (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNA, Cell Rep., 25, 255–261.

    Article  CAS  Google Scholar 

  39. Ambros, V. (2004) The functions of animal microRNAs, Nature, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., and Chen, X. (2005) Methylation as a crucial step in plant microRNA biogenesis, Science, 307, 932–935.

    Article  CAS  PubMed  Google Scholar 

  41. Kriaucionis, M., and Heintz, N. (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, 324, 929–930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009) Conversion of 5methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, 324, 930–935.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fedoreyeva, L. I., and Vanyushin, B. F. (2002) N6-adenine DNA-methyltransferase in wheat seedlings, FEBS Lett., 514, 305–308.

    Article  CAS  PubMed  Google Scholar 

  44. Butkus, V., Klimasauskas, S., Kersulyte, D., Vaitkevicius, D., Lebionka, A., and Janulaitis, A. (1985) Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of substrate, Nucleic Acids Res., 13, 5727–5746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes, Nucleic Acids Res., 38, 234–236.

    Article  CAS  Google Scholar 

  46. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secret interleukin 6, interleukin 12, and interferon γ, Proc. Natl. Acad. Sci. USA, 93, 2879–2883.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., and Lipford, G. B. (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition, Proc. Natl. Acad. Sci. USA, 98, 9237–9242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Meijer, M., Beck., E., Hansen, F. G., Bergmans, H. E., Messer, W., von Meyenburg, K., and Schaller, H. (1979) Nucleotide sequence of the origin of replication of the Escherichia coli K-12 chromosome, Proc. Natl. Acad. Sci. USA, 76, 580–584.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Glickman, B. W., and Radman, M. (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction, Proc. Natl. Acad. Sci. USA, 77, 1063–1067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Barras, F., and Marinus, M. G. (1989) The great GATC: DNA methylation in E. coli, Trends Genet., 5, 139–143.

    Article  CAS  PubMed  Google Scholar 

  51. Lluch-Senar, M., Luong, K., Llorens-Rico, V., Delgado, J., Fang, G., Spittle, K., Clark, T. A., Schadt, E., Turner, S. W., Korlach, J., and Serrano, L. (2013) Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution, PLoS Genet., 9, e1003191.

  52. Braun, R. E., and Wright, A. (1986) DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro, Mol. Gen. Genet., 202, 246–250.

    Article  CAS  PubMed  Google Scholar 

  53. Kucherer, C., Lother, H., Kolling, R., Schauzu, M. A., and Messer, W. (1986) Regulation of transcription of the chromosomal dnaA gene of Escherichia coli, Mol. Gen. Genet., 205, 115–121.

    Article  CAS  PubMed  Google Scholar 

  54. Casadesus, J., and Low, D. (2006) Epigenetic gene regulation in the bacterial world, Microbiol. Mol. Biol. Rev., 70, 830–856.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Casadesus, J., and Low, D. A. (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria, J. Biol. Chem., 288, 13929–13935.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. White-Ziegler, C. A., Black, A. M., Eliades, S. H., Young, S., and Porter, K. (2002) The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli, J. Bacteriol., 184, 4334–4342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubes, R., and Cascales, E. (2011) An epigenetic switch involving overlapping Fur and DNA methylation optimizes expression of a type VI secretion gene cluster, PLoS Genet., 7, e1002205.

    Article  CAS  Google Scholar 

  58. Schroeder, O., and Wagner, R. (2002) The bacterial regulatory protein H-NS a versatile modulator of nucleic acid structures, Biol. Chem., 383, 945–960.

    Google Scholar 

  59. Fox, K. L., Dowideit, S. J., Erwin, A. L., Srikhanta, Y. N., Smith, A. L., and Jennings, M. P. (2007) Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression, Nucleic Acids Res., 35, 5242–5252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Srikhanta, Y. N., Fox, K. L., and Jennings, M. P. (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes, Nat. Rev. Microbiol., 8, 196–206.

    Article  CAS  PubMed  Google Scholar 

  61. Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites, Trends Genet., 13, 335–340.

    Article  CAS  PubMed  Google Scholar 

  62. Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell, 99, 247–257.

    Article  CAS  PubMed  Google Scholar 

  63. Finnegan, E. J., Genger, R. K., Peacock, W. J., and Dennis, E. S. (1998) DNA methylation in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 223–247.

    Article  CAS  PubMed  Google Scholar 

  64. Dyachenko, O. V., Shevchuk, T. V., and Buryanov, Y. I. (2010) Structural-functional features of 5-methylcytosine distribution in the eukaryotic genome, Mol. Biol. (Moscow), 44, 195–210.

    Article  CAS  Google Scholar 

  65. Bestor, T. H. (1990) DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 326, 179–187.

    Article  CAS  PubMed  Google Scholar 

  66. Smit, A. F. (1996) The origin of interspersed repeats in the human genome, Curr. Opin. Genet. Dev., 6, 743–748.

    Article  CAS  PubMed  Google Scholar 

  67. McDonald, J. F. (1998) Transposable elements, gene silencing and macroevolution, Trends Ecol. Evolut., 13, 94–95.

    Article  CAS  Google Scholar 

  68. Fedoroff, N., Masson, P., and Banks, J. A. (1989) Mutations, epimutations, and the developmental programming of the maize, BioEssays, 10, 139–144.

    Article  CAS  PubMed  Google Scholar 

  69. Chandler, V. L., and Walbot, V. (1986) DNA modification of a maize transposable element correlates with loss of activity, Proc. Natl. Acad. Sci. USA, 83, 1767–1771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. McClintock, B. (1984) The significance of responses of the genome to challenge, Science, 226, 792–801.

    Article  CAS  PubMed  Google Scholar 

  71. Selker, E. U., Fritz, D. Y., and Singer, M. J. (1993) Dense nonsymmetrical DNA methylation resulting from repeatinduced point mutation in Neurospora, Science, 262, 1724–1728.

    Article  CAS  PubMed  Google Scholar 

  72. Matzke, M. A., and Birchler, J. A. (2005) RNAi-mediated pathways in the nucleus, Nat. Rev. Genet., 6, 24–35.

    Article  CAS  PubMed  Google Scholar 

  73. Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W. (1978) Molecular basis of base substitution hotspots in Escherichia coli, Nature, 274, 775–780.

    Article  CAS  PubMed  Google Scholar 

  74. Yebra, M., and Bhagwat, A. S. (1995) A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine, Biochemistry, 34, 14752–14757.

    Article  CAS  PubMed  Google Scholar 

  75. Watson, B., Munson, K., Clark, J., Shevchuk, T., and Smith, S. S. (2007) Distribution of CWG and CCWGG in the human genome, Epigenetics, 2, 151–154.

    Article  PubMed  Google Scholar 

  76. Engler, P., Weng, A., and Storb, U. (1993) Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate, Mol. Cell. Biol., 13, 571–577.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kozlov, Y. V., and Georgiev, G. P. (1970) Mechanism of inhibitory action of histones on DNA template activity in vitro, Nature, 228, 245–247.

    Article  CAS  Google Scholar 

  78. Kiryanov, G. I., Manamshyan, T. A., Polyakov, V., Fais, D., and Chentsov, Y. S. (1976) Levels of granular organization of chromatin fibers, FEBS Lett., 67, 323–327.

    Article  CAS  PubMed  Google Scholar 

  79. Allfrey, V. G. (1977) Post-synthetic modification of histone structure, in Chromatin and Chromosome Structure (Li, H. J., and Eckhardt, R., eds.) Academic Press, NY, pp. 167–191.

    Google Scholar 

  80. An, W., Kim, J., and Roeder, R. G. (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53, Cell, 117, 735–748.

    Article  CAS  PubMed  Google Scholar 

  81. Jenuwein, T., and Allis, C. D. (2001) Translating the histone code, Science, 293, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  82. Hong, Q., and Shao, Z. (2011) Ubiquitination/deubiquitination and acetylation/deacetylation: making DNMT1 stability more coordinated, Acta Pharmacol. Sin., 32, 139–140.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Ling, Y., Sankpal, U. T., Robertson, A. K., Mc Nally, J. G., Karpova, T., and Robertson, K. D. (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription, Nucleic Acids Res., 32, 598–610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kang, E. S., Park, C. W., and Chung, J. H. (2001) Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1, Biochem. Biophys. Res. Commun., 289, 862–868.

    Article  CAS  PubMed  Google Scholar 

  85. Jackson, J. P., Lingroth, A. M., Cao, X., and Jacobsen, S. E. (2002) Control of CpNpG DNA methylation by the kryptonite histone H3 methyltransferase, Nature, 416, 556–560.

    Article  CAS  PubMed  Google Scholar 

  86. Tamaru, H., and Selker, E. U. (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa, Nature, 414, 277–283.

    Article  CAS  PubMed  Google Scholar 

  87. Soppe, W. J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Huang, M. S., Jacobsen, S. E., Schubert, I., and Fransz, P. F. (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis, EMBO J., 21, 6549–6559.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Heard, E. (2004) Recent advances in X-chromosome inactivation, Curr. Opin. Cell Biol., 16, 247–255.

    Article  CAS  PubMed  Google Scholar 

  89. Rakyan, V. K., Down, T. A., Balding, D. J., and Beck, S. (2011) Epigenome-wide association studies for common human diseases, Nature Rev. Genet., 12, 529–541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Pelizzola, M., and Ecker, J. R. (2011) The DNA methylome, FEBS Lett., 585, 1994–2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Groszmann, M., Greaves, I. K., Albert, N., Fujimoto, R., Helliwell, C. A., Dennis, E. S., and Peacock, W. J. (2011) Epigenetics in plants—vernalisation and hybrid vigour, Biochim. Biophys. Acta, 1809, 427–437.

    Article  CAS  PubMed  Google Scholar 

  92. Cushman, J. C., Tillett, R. L., Wood, J. A., Branco, J. M., and Schlauch, K. A. (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM), J. Exp. Bot., 59, 1875–1894.

    Article  CAS  PubMed  Google Scholar 

  93. Dyachenko, O. V., Zakharchenko, N. S., Shevchuk, T. V., Bonert, K., Kushman, J., and Buryanov, Y. I. (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress, Biochemistry (Moscow), 71, 461–465.

    Article  CAS  Google Scholar 

  94. Cubas, P., Vincent C., and Coen, E. (1999) An epigenetic mutation responsible for natural variation in floral symmetry, Nature, 401, 157–161.

    Article  CAS  PubMed  Google Scholar 

  95. Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I., and Kovalchuk, I. (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability), Nucleic Acids Res., 35, 1714–1725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Jablonka, E., and Lamb, M. J. (1989) The inheritance of acquired epigenetic variations, J. Theor. Biol., 139, 69–83.

    Article  CAS  PubMed  Google Scholar 

  97. Molinier, J., Ries, G., Zipfel, C., and Hohn, B. (2006) Transgeneration memory of stress in plants, Nature, 442, 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  98. Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., Giovannoni, J. J., and Seymour, G. B. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nat. Genet., 38, 948–952.

    Article  CAS  PubMed  Google Scholar 

  99. Wolff, G. L., Kodell, R. L., Moore, S. R., and Cooney, C. A. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression, FASEB J., 12, 949–957.

    CAS  PubMed  Google Scholar 

  100. Morgan, Y. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999) Epigenetic inheritance at the agouti locus in the mouse, Nat. Genet., 23, 314–318.

    Article  CAS  PubMed  Google Scholar 

  101. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654–659.

    Article  CAS  PubMed  Google Scholar 

  102. Johannes, F., Porcher, E., Teixeira, F. K., Saliba Colombani, V., Simon, M., Agier, N., Bulski, A., Albuisson, J., Heredia, F., Audigier, P., Bouchez, D., Dillmann, C., Guerche, P., Hospital, F., and Colot, V. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits, PLoS Genet., 5, e1000530.

    Article  CAS  Google Scholar 

  103. Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabiko, H. (1990) A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA, Mol. Gen. Genet., 220, 441–447.

    Article  CAS  Google Scholar 

  104. Heslop-Harrison, J. S. (1990). Gene expression and parental dominance in hybrid plants, Development, 108 (Suppl.), 21–28.

    Google Scholar 

  105. Fieldes, M. A. (1993) Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes, Genome, 37, 1–11.

    Article  Google Scholar 

  106. Yablokov, A. V., and Yusufov, A. G. (2006) Theory of Evolution [in Russian], Vysshaya Shkola, Moscow, p. 149.

    Google Scholar 

  107. Crick, F. (2002) Life Itself. Its Origin and Nature [Russian translation], Institute of Computerized Investigations, Moscow.

    Google Scholar 

  108. Berg, L. S. (1977) Works on the History of Evolution [in Russian], Nauka, Leningrad, pp. 309, 311.

    Google Scholar 

  109. Fortov, V. E. (2003) in The Origin of Life: Facts, Hypotheses, Evidence (Vertyanov, S. Yu., author) [in Russian], SvyatoTroitskaya Sergieva Lavra, Moscow.

  110. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.

    Article  CAS  Google Scholar 

  111. Vavilov, N. I. (1987) The Law of Homogenous Series in the Genetic Variation [in Russian], Nauka, Leningrad.

    Google Scholar 

  112. Devlin, T. M. (ed.) (1992) Textbook of Biochemistry with Clinical Correlations, 3rd Edn., WILEY-LISS, NY.

    Google Scholar 

  113. Xu, G. L., Bestor, T. H., Bourc’his, D., Hsieh, C. L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J. J., and Viegas-Pequignot, E. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene, Nature, 402, 187–191.

    Article  CAS  PubMed  Google Scholar 

  114. Taylor, S. M., and Jones, P. A. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5azacytidine, Cell, 17, 771–779.

    Article  CAS  PubMed  Google Scholar 

  115. Yoo, C. B., and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov., 5, 37–50.

    Article  CAS  PubMed  Google Scholar 

  116. Huang, Y. W., Kuo, C. T., Stoner, K., Huang T. H. Y., and Wang, L. S. (2011) An overview of epigenetics and chemoprevention, FEBS Lett., 585, 2129–2136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Hoffman, R. M. (1984) Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis, Biochim. Biophys. Acta, 738, 49–87.

    CAS  PubMed  Google Scholar 

  118. Vanyushin, B. F., Lopatina, N. G., Wise, C. K., Fullerton, F. R., and Poirier, L. A. (1998) Butylated hydroxytoluene modulates DNA methylation in rats, Eur. J. Biochem., 256, 518–527.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Buryanov.

Additional information

Original Russian Text © Ya. I. Buryanov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 9, pp. 1376–1390.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryanov, Y.I. Adaptive epibiochemistry and epigenetics. Biochemistry Moscow 80, 1145–1156 (2015). https://doi.org/10.1134/S0006297915090059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915090059

Key words

Navigation