Skip to main content
Log in

Organization of chloroplast psbA-trnH intergenic spacer in dicotyledonous angiosperms of the family umbelliferae

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Chloroplast intergenic psbA-trnH spacer has recently become a popular tool in plant molecular phylogenetic studies at low taxonomic level and as suitable for DNA barcoding studies. In present work, we studied the organization of psbA-trnH in the large family Umbelliferae and its potential as a DNA barcode and phylogenetic marker in this family. Organization of the spacer in Umbelliferae is consistent with a general pattern evident for angiosperms. The 5′-region of the spacer situated directly after the psbA gene is more conserved in length compared to the 3′-region, which has greater sequence variation. This pattern can be attributed to the maintenance of the secondary structural elements in the 5′-region of the spacer needed for posttranscriptional regulation of psbA gene expression. In Umbelliferae only, the conserved region contains a duplication of the fragment corresponding to the loop of the stem-loop structure and an independent appearance of identical sequence complementarities (traits) necessary to stabilize the stem-loop structure in different lineages. The 3′-region of the spacer nearest to trnH ranges greatly in size, mainly due to deletions, and the decrease in spacer length is a general trend in the evolution psbA-trnH in Umbelliferae. The features revealed in spacer organization allow us to use it as phylogenetic marker, and indels seem to be more informative for analyses than nucleotide substitutions. However, high conservation among closely related taxa and occurrence of homoplastic inversions in the stem-loop structure limit its application as DNA barcode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneier, V. S. (2005) Botan. Zh., 90, 3–18.

    Google Scholar 

  2. Antonov, A. S. (2006) Genosystematics of Plants [in Russian], Akademkniga, Moscow.

    Google Scholar 

  3. Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003) Proc. R. Soc. Lond. B, 270, 313–321.

    Article  CAS  Google Scholar 

  4. Chase, M. W., Salamin, N., Wilkinson, M., Dunwell, J. M., Kesanakurthi, R. P., Haidar, N., and Savolainen, V. (2005) Phil. Trans. R. Soc. B, 360, 1889–1895.

    Article  PubMed  CAS  Google Scholar 

  5. Cowan, R. S., Chase, M. W., Kress, W. J., and Savolainen, V. (2006) Taxon, 55, 611–616.

    Article  Google Scholar 

  6. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., and Janzen, D. H. (2005) Proc. Natl. Acad. Sci. USA, 102, 8369–8374.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, G. K., Nelson, G., and Ladiges, P. Y. (2006) J. Biogeogr., 33, 1929–1944.

    Article  Google Scholar 

  8. Miikeda, O., Koichi, K., Handa, T., and Yukawa, T. (2006) Bot. J. Linn. Soc., 152, 153–168.

    Article  Google Scholar 

  9. Kulcheski, F. R., Muschner, V. C., Lorenz-Lemke, A. P., Stehmann, J. R., Bonatto, S. L., Salzano, F. M., and Freitas, L. B. (2006) Genetica, 126, 3–14.

    Article  PubMed  CAS  Google Scholar 

  10. Yao, H, Song, J. Y., Ma, X. Y., Liu, C., Li, Y., Xu, H. X., Han, J. P., Duan, L. S., and Chen, S. L. (2009) Planta Med., 75, 667–669.

    Article  PubMed  CAS  Google Scholar 

  11. Newmaster, S. G., Fazekas, A. J., Steeves, R. A. D., and Janovec, J. (2008) Mol. Ecol. Resour., 8, 480–490.

    Article  PubMed  CAS  Google Scholar 

  12. Nicolas, A. N., and Plunkett, G. M. (2009) Mol. Phylogenet. Evol., 53, 134–151.

    Article  PubMed  CAS  Google Scholar 

  13. Downie, S. R., Spalik, K., Katz-Downie, D. S., and Reduron, J.-P. (2010) Pl. Div. Evol., 128, 111–136.

    Article  Google Scholar 

  14. Logacheva, M. D., Valiejo-Roman, C. M., and Pimenov, M. G. (2008) Pl. Syst. Evol., 270, 139–157.

    Article  CAS  Google Scholar 

  15. Degtjareva, G. V., Kljuykov, E. V., Samigullin, T. H., Valiejo-Roman, C. M., and Pimenov, M. G. (2009) Bot. J. Linn. Soc., 160, 149–170.

    Article  Google Scholar 

  16. Valiejo-Roman, C. M., Terentieva, E. I., Pimenov, M. G., Kljuykov, E. V., Samigullin, T. H., and Tilney, P. M. (2012) Syst. Bot., 37, 573–581.

    Article  Google Scholar 

  17. Edgar, R. C. (2004) BMC Bioinformatics, 5, 113.

    Article  PubMed  Google Scholar 

  18. Hall, T. A. (1999) Nucleic Acids Symp. Ser., 41, 95–98.

    CAS  Google Scholar 

  19. Leontovich, A. M., Brodsky, L. I., and Gorbalenya, A. E. (1993) Biosystems, 30, 57–63.

    Article  PubMed  CAS  Google Scholar 

  20. Zuker, M. (2003) Nucleic Acids Res., 31, 3406–3415.

    Article  PubMed  CAS  Google Scholar 

  21. De Rijk, P., and van de Peer, Y. (1997) Nucleic Acids Res., 25, 117–122.

    Article  PubMed  Google Scholar 

  22. Storchova, H., and Olson, M. S. (2007) Pl. Syst. Evol., 268, 235–256.

    Article  CAS  Google Scholar 

  23. Wilson, K. S., and von Hippel, P. H. (1995) Proc. Natl. Acad. Sci. USA, 92, 8793–8797.

    Article  PubMed  CAS  Google Scholar 

  24. Stern, D. B., and Gruissem, W. (1987) Cell, 51, 1145–1157.

    Article  PubMed  CAS  Google Scholar 

  25. Stern, D. B., Jones, H., and Gruissem, W. (1989) J. Biol. Chem., 264, 18742–18750.

    PubMed  CAS  Google Scholar 

  26. Nickelsen, J., and Link, G. (1990) Mol. Gen. Genet., 228, 89–96.

    Google Scholar 

  27. Tonkyn, J. C., and Gruissem, W. (1993) Mol. Gen. Genet., 241, 141–152.

    Article  PubMed  CAS  Google Scholar 

  28. Singer, M., and Berg, P. (1998) Genes and Genomes [Russian translation], Vol. 2, Mir, Moscow.

    Google Scholar 

  29. Stern, D. B., Radwanski, E. R., and Kindle, K. L. (1991) Plant Cell, 3, 285–297.

    PubMed  CAS  Google Scholar 

  30. Adams, C. C., and Stern, D. B. (1990) Nucleic Acids Res., 25, 6003–6010.

    Article  Google Scholar 

  31. Kelchner, S. A., and Wendel, J. F. (1996) Curr. Genet., 30, 259–262.

    Article  PubMed  CAS  Google Scholar 

  32. Kelchner, S. A. (2000) Ann. Missouri Bot. Gard., 87, 482–498.

    Article  Google Scholar 

  33. Quandt, D., Muller, K., and Huttunen, S. (2003) Pl. Biol., 5, 400–410.

    Article  CAS  Google Scholar 

  34. Whitlock, B. A., Hale, A. M., and Groff, P. A. (2010) PLoS One, 5, e11533.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Valiejo-Roman.

Additional information

Original Russian Text © G. V. Degtjareva, M. D. Logacheva, T. H. Samigullin, E. I. Terentieva, C. M. Valiejo-Roman, 2012, published in Biokhimiya, 2012, Vol. 77, No. 9, pp. 1273–1283.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degtjareva, G.V., Logacheva, M.D., Samigullin, T.H. et al. Organization of chloroplast psbA-trnH intergenic spacer in dicotyledonous angiosperms of the family umbelliferae. Biochemistry Moscow 77, 1056–1064 (2012). https://doi.org/10.1134/S0006297912090131

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912090131

Key words

Navigation