Skip to main content
Log in

Analysis of nucleolar protein fibrillarin mobility and functional state in living HeLa cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Fibrillarin is an evolutionarily-conserved and obligatory protein component of eukaryotic cell nucleoli involved in pre-rRNA processing and methylation. In vertebrates the fibrillarin molecule contains two cysteine residues (Cys99 and Cys268) whose sulfhydryl groups are able to establish intramolecular -S-S- bridges. However, the functional state of fibrillarin with reduced or oxidized thiol groups is still practically unstudied. Besides, there are no data in the literature concerning existence of the -S-S- fibrillarin form in human cells. To answer these questions, we used plasmids encoding native human fibrillarin and its mutant form devoid of cysteine residues (fibrillarinC99/268S) fused with EGFP for temporary transfection of HeLa cells. The mobile fraction localizing the enzymatically active protein molecules and the fluorescence half-recovery time characterizing the rate of enzymatic reactions were determined by the FRAP technique using a confocal laser scanning microscope. Measurements were carried out at 37 and 27°C. The results show that the fibrillarin pool in HeLa cells includes two protein forms, with reduced SH groups and with oxidized SH groups forming intramolecular -S-S- bridges between Cys99 and Cys268. However, the absence of Cys99 and Cys268 has no effect on intracellular localization of fibrillarin and its main dynamic parameters. The human fibrillarin form without disulfide bridges is included into the mobile protein fraction and is consistent with its functionally active state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aris, J. P., and Blobel, G. (1991) Cell Biol., 88, 931–935.

    CAS  Google Scholar 

  2. Pearson, D. L., Reimonenq, R. D., and Pollard, K. M. (1999) Protein Expres. Purif., 17, 49–56.

    Article  CAS  Google Scholar 

  3. Aittaleb, M., Visone, T., Fenley, M. O., and Li, H. (2004) J. Biol. Chem., 279, 41822–41829.

    Article  CAS  PubMed  Google Scholar 

  4. Tollervey, D. (1993) Cell, 72, 443–457.

    Article  CAS  PubMed  Google Scholar 

  5. Newton, K., Petfalski, E., Tollervey, D., and Caceres, J. F. (2003) Mol. Cell. Biol., 23, 8519–8527.

    Article  CAS  PubMed  Google Scholar 

  6. Fatica, A., Galardi, S., Altieri, F., and Bozzoni, I. (2000) RNA, 6, 88–95.

    Article  CAS  PubMed  Google Scholar 

  7. Gerbi, S. A., and Borovjagin, A. (1997) Chromosoma, 105, 401–406.

    Article  CAS  PubMed  Google Scholar 

  8. Tran, E. J., Zhang, X., and Maxwell, E. S. (2003) EMBO J., 22, 3930–3940.

    Article  CAS  PubMed  Google Scholar 

  9. Snaar, S., Wiesmeijer, K., Jochemsen, A. G., Tanke, H. J., and Dirks, R. W. (2000) J. Cell Biol., 151, 653–662.

    Article  CAS  PubMed  Google Scholar 

  10. Levitsky, S. A., Mukhar’yamova, K. Sh., Veiko, V. P., and Zatsepina, O. V. (2004) Mol. Biol. (Moscow), 38, 1–10.

    Article  Google Scholar 

  11. Wang, H., Boisvert, D., Kim, K. K., Kim, R., and Kim, S.-H. (2000) EMBO J., 19, 317–323.

    Article  CAS  PubMed  Google Scholar 

  12. Martin, J. L., and McMillan, F. M. (2002) Curr. Opin. Struct. Biol., 12, 783–793.

    Article  CAS  PubMed  Google Scholar 

  13. Reichow, S. L., Hamma, T., Ferre-D’Amare, A. R., and Varani, G. (2007) Nucleic Acids Res., 35, 1452–1464.

    Article  CAS  PubMed  Google Scholar 

  14. Pollard, K. M., Lee, D. K., Casiano, C. A., Bluthner, M., Johnston, M. M., and Tan, E. M. (1997) J. Immunol., 158, 3521–3528.

    CAS  PubMed  Google Scholar 

  15. Takeuchi, K., Turley, S. J., Tan, E. M., and Pollard, K. M. (1995) J. Immunol., 154, 961–971.

    CAS  PubMed  Google Scholar 

  16. Chen, M., Rockel, T., Steinweger, G., Hemmerich, P., Risch, J., and von Mikecz, A. (2002) Mol. Biol. Cell, 13, 3576–3587.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, M., and von Mikecz, A. (2005) Ann. N. Y. Acad. Sci., 1051, 382–389.

    Article  CAS  PubMed  Google Scholar 

  18. Torchinsky, Yu. M. (1971) Sulfhydryl and Disulfide Groups in Proteins [in Russian], Nauka, Moscow.

    Google Scholar 

  19. Jocelyn, P. C. (1972) Biochemistry of the SH Group, Academic Press, London-New York.

    Google Scholar 

  20. Friedman, M. (1973) The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins, Oxford, New York.

  21. Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., Chepurnykh, T. V., Fradkov, A. F., Lukyanov, S., and Lukyanov, K. A. (2006) Nat. Biotechnol., 24, 461–465.

    Article  CAS  PubMed  Google Scholar 

  22. Trinkle-Mulcahy, L., and Lamond, A. I. (2007) Science, 318, 1402–1407.

    Article  CAS  PubMed  Google Scholar 

  23. Houtsmuller, A. B. (2005) Adv. Biochem. Eng. Biotechnol., 95, 177–199.

    CAS  PubMed  Google Scholar 

  24. Van Royen, M. E., Farla, P., Mattern, K. A., Geverts, B., Trapman, J., and Houtsmuller, A. B. (2009) in The Nucleus (Hancock, R., ed.) Humana Press, New York, pp. 363–385.

    Chapter  Google Scholar 

  25. Phair, R. D., and Misteli, T. (2000) Nature, 404, 604–609.

    Article  CAS  PubMed  Google Scholar 

  26. Fradkov, A. F., Verkhusha, V. V., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Martynov, V. I., Lukyanov, S., and Lukyanov, K. A. (2002) Biochem. J., 368, 17–21.

    Article  CAS  PubMed  Google Scholar 

  27. Levitsky, S. A., Mukhar’yamova, K. Sh., Zatsepina, O. V., and Veiko, V. P. (2004) Biotekhnologiya, 6, 19–26.

    Google Scholar 

  28. Hoogstraten, D., Nigg, A. L., Heath, H., Mullenders, L. H., van Driel, R., Hoeijmakers, J. H., Vermeulen, W., and Houtsmuller, A. B. (2002) Mol. Cell., 10, 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  29. Dobrucki, J. W., Feret, D., and Noatynska, A. (2007) Biophys. J., 93, 1778–1786.

    Article  CAS  PubMed  Google Scholar 

  30. Mukhar’yamova, K. Sh., and Zatsepina, O. V. (2001) Tsitologiya, 43, 792–795.

    Google Scholar 

  31. Ershov, Yu. A., and Pletneva, T. V. (1989) Mechanisms of Toxic Effects of Inorganic Compounds [in Russian], Meditsina, Moscow.

    Google Scholar 

  32. Kutsenko, S. A. (2004) Bases of Toxicology [in Russian], Foliant Publishing House, St. Petersburg.

    Google Scholar 

  33. Zalups, R. K., and Ahmad, S. (2004) J. Am. Soc. Nephrol., 15, 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  34. Verheggen, C., le Panse, S., Almouzni, G., and Hernandez-Verdun, D. (2001) Exp. Cell Res., 269, 23–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ochs, R. L., and Smetana, K. (1991) Exp. Cell Res., 197, 183–190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Zatsepin.

Additional information

Original Russian Text © V. V. Barygina, V. P. Veiko, O. V. Zatsepina, 2010, published in Biokhimiya, 2010, Vol. 75, No. 8, pp. 1079–1090.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM10-028, June 27, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barygina, V.V., Veiko, V.P. & Zatsepin, O.V. Analysis of nucleolar protein fibrillarin mobility and functional state in living HeLa cells. Biochemistry Moscow 75, 979–988 (2010). https://doi.org/10.1134/S0006297910080055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910080055

Key words

Navigation