Skip to main content
Log in

Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We identified a novel human-specific family of transposable elements that consists of fused copies of the CpG-island containing the first exon of gene MAST2 and retrotransposon SVA. We propose a mechanism for the formation of this family termed CpG-SVA, comprising 5′-transduction by an SVA insert. After the divergence of human and chimpanzee ancestor lineages, retrotransposon SVA has inserted into the first intron of gene MAST2 in the sense orientation. Due to splicing of an aberrant RNA driven by MAST2 promoter, but terminally processed using SVA polyadenylation signal, the first exon of MAST2 has fused to a spliced 3′-terminal fragment of SVA retrotransposon. The above ancestor CpG-SVA element due to retrotranspositions of its own copies has formed a novel family represented in the human genome by 76 members. Recruitment of a MAST2 CpG island was most likely beneficial to the hybrid retrotransposons because it could significantly increase retrotransposition frequency. Also, we show that human L1 reverse transcriptase adds an extra cytosine residue to the 3′ terminus of the nascent first strand of cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

REs:

retroelements

References

  1. Baltimore, D. (1970) Nature, 226, 1209–1211.

    Article  CAS  PubMed  Google Scholar 

  2. Temin, H. M., and Mizutani, S. (1970) Nature, 226, 1211–1213.

    Article  CAS  PubMed  Google Scholar 

  3. Eickbush, T. H. (1997) Science, 277, 911–912.

    Article  CAS  PubMed  Google Scholar 

  4. Buzdin, A. A. (2004) Cell. Mol. Life Sci., 61, 2046–2059.

    Article  CAS  PubMed  Google Scholar 

  5. Mills, R. E., Bennett, E. A., Iskow, R. C., Luttig, C. T., Tsui, C., Pittard, W. S., and Devine, S. E. (2006) Am. J. Hum. Genet., 78, 671–679.

    Article  CAS  PubMed  Google Scholar 

  6. Buzdin, A. (2007) Sci. World J., 7, 1848–1868.

    CAS  Google Scholar 

  7. Jurka, J. (1997) Proc. Natl. Acad. Sci. USA, 94, 1872–1877.

    Article  CAS  PubMed  Google Scholar 

  8. Kazazian, H. H., Jr., and Goodier, J. L. (2002) Cell, 110, 277–280.

    Article  CAS  PubMed  Google Scholar 

  9. Furano, A. V. (2000) Progr. Nucleic Acid Res. Mol. Biol., 64, 255–294.

    Article  CAS  Google Scholar 

  10. Ullu, E., and Tschudi, C. (1984) Nature, 312, 171–172.

    Article  CAS  PubMed  Google Scholar 

  11. Kramerov, D. A., and Vassetzky, N. S. (2005) Int. Rev. Cytol., 247, 165–221.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, H., Xing, J., Grover, D., Hedges, D. J., Han, K., Walker, J. A., and Batzer, M. A. (2005) J. Mol. Biol., 354, 994–1007.

    Article  CAS  PubMed  Google Scholar 

  13. Goodier, J. L., and Kazazian, H. H. (2008) Cell, 135, 23–35.

    Article  CAS  PubMed  Google Scholar 

  14. Xing, J., Wang, H., Belancio, V. P., Cordaux, R., Deininger, P. L., and Batzer, M. A. (2006) Proc. Natl. Acad. Sci. USA, 103, 17608–17613.

    Article  CAS  PubMed  Google Scholar 

  15. Babushok, D. V., Ostertag, E. M., and Kazazian, H. H. (2007) Cell. Mol. Life Sci., 64, 542–554.

    Article  CAS  PubMed  Google Scholar 

  16. Buzdin, A., Gogvadze, E., Kovalskaya, E., Volchkov, P., Ustyugova, S., Illarionova, A., Fushan, A., Vinogradova, T., and Sverdlov, E. (2003) Nucleic Acids Res., 31, 4385–4390.

    Article  CAS  PubMed  Google Scholar 

  17. Gogvadze, E., Barbisan, C., Lebrun, M. H., and Buzdin, A. (2007) BMC Genom., 8, 360.

    Article  Google Scholar 

  18. Brosius, J. (1999) Genetica, 107, 209–238.

    Article  CAS  PubMed  Google Scholar 

  19. Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005) Cytogenet. Genome Res., 110, 462–467.

    Article  CAS  PubMed  Google Scholar 

  20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol., 215, 403–410.

    CAS  PubMed  Google Scholar 

  21. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  22. Felsenstein, J. (1993) Distributed by the author, Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  23. Hancks, D., Ewing, A., Chen, J. E., Tokunaga, K., and Kazazian, H. (2009) Genome Res., August 3 (E-pub ahead of print).

  24. Damert, A., Raiz, J., Horn, A., Lower, J., Wang, H., Xing, J., Batzer, M., Lower, R., and Schumann, G. (2009) Genome Res., July 27 (E-pub ahead of print).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Buzdin.

Additional information

Published in Russian in Biokhimiya, 2009, Vol. 74, No. 12, pp. 1709–1717.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-214, November 15, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bantysh, O.B., Buzdin, A.A. Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA. Biochemistry Moscow 74, 1393–1399 (2009). https://doi.org/10.1134/S0006297909120153

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909120153

Key words

Navigation