Skip to main content
Log in

Catalytic properties of enzymes from Erwinia carotovora involved in transamination of phenylpyruvate

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

K m for L-phenylalanine, L-glutamic acid, L-aspartic acid, and the corresponding keto acids were calculated, as well as V max was measured for the following pairs of substrates: L-phenylalanine-2-ketoglutarate, L-phenylalanine-oxaloacetate, L-glutamic acid-phenylpyruvate, and L-aspartic acid-phenylpyruvate for aminotransferases PAT1, PAT2, and PAT3 from Erwinia carotovora catalyzing transamination of phenylpyruvate. The ping-pong bi-bi mechanism was shown for the studied aminotransferases. The substrate inhibition (K s) of PAT3 with 2-ketoglutarate and oxaloacetate was 10.23 ± 3.20 and 3.73 ± 1.99 mM, respectively.

It was shown that L-β-(N-benzylamino)alanine was a competitive inhibitor with respect to L-phenylalanine for PAT1 (K i = 0.32 ± 0.07 mM, K m = 0.45 ± 0.1 mM, V max = 11. 6 ± 0.4 U/mg) at 25 mM concentration of 2-ketoglutarate in the reaction medium. L-β-(N-methylamino)alanine is a noncompetitive inhibitor with respect to L-phenylalanine for PAT3 (K I = 138.4 ± 95.4 mM, K m = 13.7 ±3.9 mM, V max = 18.6 ± 4.1 U/mg) at 2 mM concentration of 2-ketoglutarate in the reaction medium. L-stereo isomers of nonprotein analogues of aromatic amino acids were studied as substrates for PAT1, PAT2, and PAT3. L-β-(2-Br-phenyl)alanine, L-β-(4-Br-phenyl)alanine, L-β-(2-F-phenyl)alanine, and L-(2-F)tryptophan were good substrates for all three aminotransferases; L-α-methyl-β-(2-Br-phenyl)alanine and L-O-benzyltyrosine were substrates only for PAT3; L-β-(4-F-phenyl)alanine was a substrate for PAT1 and PAT3. Thus, these analogues of aromatic amino acids can be stereoselectively synthesized using the studied aminotransferases in the presence of the corresponding keto acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunshtein, A.E. and Kritsman, M.G., Enzimologiya, 1937, vol. 2, pp. 129–137.

    Google Scholar 

  2. Collier, R.H. and Kohlhaw, G., J. Bacteriol., 1972, vol. 112, no. 1, pp. 365–371.

    PubMed  CAS  Google Scholar 

  3. Mavrides, C. and Orr, W., J. Biol. Chem., 1975, vol. 250, no. 11, pp. 4128–4133.

    PubMed  CAS  Google Scholar 

  4. Gelfand, D.H. and Steinberg, R.A., J. Bacteriol., 1977, vol. 130, pp. 429–440.

    PubMed  CAS  Google Scholar 

  5. Powell, J.T. and Morrison, J.F., J. Biochem., 1978, vol. 87, pp. 391–400.

    CAS  Google Scholar 

  6. Weigent, D.A. and Nester, E.W., J. Biochem., 1976, vol. 251, no. 22, pp. 6974–6980.

    CAS  Google Scholar 

  7. Nester, E.W. and Montoya, A.L., J. Bacteriol., 1976, vol. 126, no. 2, pp. 699–705.

    PubMed  CAS  Google Scholar 

  8. Sung, M., Tanizawa, K., Tanaka, H., Kuramitsu, S., Kagamiyama, H., and Soda, K., J. Bacteriol., 1990, vol. 172, no. 3, pp. 1345–1351.

    PubMed  CAS  Google Scholar 

  9. Fazel, A.M. and Jensen, R.A., J. Bacteriol., 1979, vol. 140, no. 2, pp. 580–587.

    PubMed  CAS  Google Scholar 

  10. Lee, C. and Desmazeaud, M.J., J. Gen. Microbiol., 1985, vol. 131, pp. 459–467.

    CAS  Google Scholar 

  11. Whitaker, R.J., Gaines, C.G., and Jensen, R.A., J. Biol. Chem., 1982, vol. 257, no. 22, pp. 13550–13556.

    PubMed  CAS  Google Scholar 

  12. Ziehr, H. and Kula, M-R., J. Biotechnol., 1985, vol. 3, nos. 1–2, pp. 19–31.

    Article  CAS  Google Scholar 

  13. Paris, C.G. and Magasanik, B., J. Bacteriol., 1981, vol. 145, no. 1, pp. 266–271.

    PubMed  CAS  Google Scholar 

  14. Abou-Zeid, A., Euverink, G.J.W., Hessels, G.I., Jensen, R.A., and Dijkhuizen, L., Appl. Environ. Microbiol., 1995, vol. 61, no. 4, pp. 1298–1302.

    PubMed  CAS  Google Scholar 

  15. Rijnen, L., Bonneau, S., and Yvon, M., Appl. Environ. Microbiol., 1999, vol. 65, no. 11, pp. 4873–4880.

    PubMed  CAS  Google Scholar 

  16. Xing, R.Y. and Whitman, W.B., J. Bacteriol., 1992, vol. 174, no. 2, pp. 541–548.

    PubMed  CAS  Google Scholar 

  17. Andreotti, G., Cubellis, M.V., Nitti, G., Sannia, G., Mai, X., Marino, G., and Adams, M.W.W., Eur. J. Biochem., 1994, vol. 220, pp. 543–549.

    Article  PubMed  CAS  Google Scholar 

  18. Matsui, I., Matsui, E., Sakai, Y., Kikuchi, H., Kawarabayasi, Y., Urai, H., Kawaguchii, S., Kuramitsui, S., and Harata, K., J. Biol. Chem., 2000, vol. 275, no. 7, pp. 4871–4879.

    Article  PubMed  CAS  Google Scholar 

  19. Ward, D.E., De Vos, W.M., and Van Der Oost, J., J. Archaea, 2002, vol. 1, pp. 133–141.

    Article  CAS  Google Scholar 

  20. Cardenas-Fernandez, M., Lopez, C., Alvaro, G., and Lopez-Santin, J., J. Biochem. Engin., 2012, vol. 63, pp. 15–21.

    Article  CAS  Google Scholar 

  21. US Patent No. 4783403, 1988.

  22. US Patent No. 4745059, 1988.

  23. AM Patent No. 2479A, 2010.

  24. Paloyan, A.M., Hambardzumyan, A.A., and Halebyan, Gh.P., Biochemistry (Moscow), 2012, vol. 77, no. 1, pp. 98–104.

    Article  CAS  Google Scholar 

  25. Peterson, G., Methods Enzymol., 1983, vol. 91, no. 1, pp. 95–119.

    Article  PubMed  CAS  Google Scholar 

  26. Cornish-Bowden, A., Fundamentals of Enzyme Kinetics, London: Portland, 1977.

    Google Scholar 

  27. King, E.L. and Altman, C., J. Phys. Chem., 1956, vol. 60, pp. 1375–1378.

    Article  CAS  Google Scholar 

  28. Kirchner, J., in Tonkosloinaya khromatografiya (Thin Layer Chromatography), Moscow: Mir, 1981.

    Google Scholar 

  29. Velick, S.F. and Vavra, J., J. Biol. Chem., 1962, vol. 237, no. 7, pp. 2109–2122.

    PubMed  CAS  Google Scholar 

  30. Ambartsumyan, A.A. and Bezirdzhyan, Kh.O., Biochemistry (Moscow), 1994, vol. 59, no. 9, pp. 1027–1032.

    Google Scholar 

  31. Montemartini, J.A. and Santome, J.J., Cazzulot and C. Nowicki, J. Biochem., 1993, vol. 292, pp. 901–906.

    CAS  Google Scholar 

  32. Oganesyan, A.M., Biol. Zh. Armen., 2009, vol. 64, no. 4, pp. 101–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Paloyan.

Additional information

Original Russian Text © A.M. Paloyan, L.A. Stepanyan, S.A. Dadayan, A.A. Hambardzumyan, Gh.P. Halebyan, A.S. Saghiyan, 2013, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2013, Vol. 49, No. 2, pp. 129–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paloyan, A.M., Stepanyan, L.A., Dadayan, S.A. et al. Catalytic properties of enzymes from Erwinia carotovora involved in transamination of phenylpyruvate. Appl Biochem Microbiol 49, 106–112 (2013). https://doi.org/10.1134/S0003683813020129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813020129

Keywords

Navigation