Skip to main content
Log in

Modeling Residual Meridional Circulation at Different Phases of the Quasi-Biennial Oscillation

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The sensitivity of the residual meridional circulation (RMC) in the middle and upper atmosphere to the phase change of the quasi-biennial oscillation (QBO) of the low-latitude zonal wind in the stratosphere has been studied. Wind and temperature data obtained from a nonlinear numerical model of general circulation of the middle and upper atmosphere (MUAM) have been used to calculate the RMC. For the first time, statistically significant results have been obtained illustrating the change in wave-induced eddy flows in the extratropical strato–mesosphere at different QBO phases. Specifically, a general weakening of the eddy circulation in the Northern Hemisphere at the westerly QBO phase has been demonstrated, with the exception of the region located at midlatitudes in the altitude range of 50–60 km. The study of the RMC sensitivity to changes in QBO phases helps better understand the features of the dynamic interaction between tropical and extratropical latitudes, as well as different atmospheric layers that affect the circulation transport and mixing of long-lived atmospheric components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Fishman and P. J. Crutzen, “The origin of ozone in the troposphere,” Nature 274, 855–857 (1978).

    Article  Google Scholar 

  2. G. M. B. Dobson, D. N. Harrison, and J. Lawrence, “Measurements of the amount of ozone in the Earth’s Atmosphere and its relation to other geophysical conditions. Part III,” Proc. R. Soc. 122 (790), 456–486 (1929).

  3. A. W. Brewer, “Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere,” Q. J. R. Meteorol. Soc. 75, 351–363 (1949). https://doi.org/10.1002/qj.49707532603

    Article  Google Scholar 

  4. J. R. Holton, The Dynamic Meteorology of the Stratosphere and Mesosphere (Am. Meteorol. Soc., Boston, Mass., 1975).

    Book  Google Scholar 

  5. J. G. Charney and P. G. Drazin, “Propagation of planetary-scale disturbances from the lower into the upper atmosphere,” J. Geophys. Res. 66, 83–109 (1961).

    Article  Google Scholar 

  6. N. Butchart, “The Brewer-Dobson circulation,” Rev. Geophys. 52, 157–184 (2014). https://doi.org/10.1002/2013RG000448

    Article  Google Scholar 

  7. R. J. Murgatroyd and F. Singleton, “Possible meridional circulations in the stratosphere and mesosphere,” Q. J. R. Meteorol. Soc. 87, 125–135 (1961). https://doi.org/10.1002/qj.49708737202

    Article  Google Scholar 

  8. D. G. Andrews and M. E. McIntyre, “Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration,” J. Atmos. Sci. 33, 2031–2048 (1976).

    Article  Google Scholar 

  9. D. G. Andrews and M. E. McIntyre, “An exact theory of nonlinear waves on a Lagrangian mean flow,” J. Fluid Mech. 89, 609–646 (1978).

    Article  Google Scholar 

  10. T. G. Shepherd, “Transport in the middle atmosphere,” J. Meteorol. Soc. Jpn. 85 (2007).

  11. N. Butchart and A. A. Scaife, “Removal of chlorofluorocarbons by increased mass exchange between stratosphere and troposphere in a changing climate,” Nature 410, 799–802 (2001). https://doi.org/10.1038/35071047

    Article  Google Scholar 

  12. C. McLandress and T. G. Shepherd, “Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes,” J. Clim. 22, 1516–1540 (2009). https://doi.org/10.1175/2008JCLI2679.1

    Article  Google Scholar 

  13. S. Oberländer, U. Langematz, and S. Meul, “Unraveling impact factors for future changes in the Brewer–Dobson circulation,” J. Geophys. Res.: Atmos. 118, 10296–10312 (2013). https://doi.org/10.1002/jgrd.50775

    Article  Google Scholar 

  14. K. H. Rosenlof, “Seasonal cycle of the residual mean meridional circulation in the stratosphere,” J. Geophys. Res. 100 (D3), 5173–5191 (1995). https://doi.org/10.1029/94JD03122

    Article  Google Scholar 

  15. W. J. M. Seviour, N. Butchart, and S. C. Hardiman, “The Brewer-Dobson circulation inferred from ERA-Interim,” Q. J. R. Meteorol. Soc. 138, 878–888 (2012). https://doi.org/10.1002/qj.966

    Article  Google Scholar 

  16. J. R. Holton and H. Tan, “The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb,” J. Atmos. Sci. 37, 2200–2208 (1980).

    Article  Google Scholar 

  17. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39 (2), 179–229 (2001).

    Article  Google Scholar 

  18. F. Hansen, K. Matthes, C. Petrick, and W. Wang, “The influence of natural and anthropogenic factors on major stratospheric sudden warmings,” J. Geophys. Res.: Atmos. 119, 8117–8136 (2014). https://doi.org/10.1002/2013JD021397

    Article  Google Scholar 

  19. C. I. Garfinkel, A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, “Why might stratospheric sudden warmings occur with similar frequency in El Nino and La Nina winters?,” J. Geophys. Res 117, D19106 (2012). https://doi.org/10.1029/2012JD017777

  20. A. I. Pogoreltsev, A. A. Vlasov, K. Fröhlich, and Ch. Jacobi, “Planetary waves in coupling the lower and upper atmosphere,” J. Atmos. Sol.-Terr. Phys. 69, 2083–2101 (2007). https://doi.org/10.1016/j.jastp.2007.05.014

    Article  Google Scholar 

  21. A. I., Pogorel’tsev, “Generation of normal atmospheric modes by stratospheric vacillations,” Izv., Atmos. Ocean. Phys. 43 (4), 423-435 (2007).

    Article  Google Scholar 

  22. A. V. Koval, “Calculation of residual meridional circulation according to the model of the middle and upper atmosphere,” Uch. Zap. RGGMU 55, 25–32 (2019a). https://doi.org/10.33933/2074-2762-2019-55-25-32

    Article  Google Scholar 

  23. A. V. Koval, “Statistically significant estimates of the influence of solar activity on planetary waves in the middle atmosphere of the Northern Hemisphere as derived from MUAM model data, J. Sol.-Terr. Phys. 5 (4), 53–59 (2019b). https://doi.org/10.12737/stp-54201907

    Article  Google Scholar 

  24. T. S. Ermakova, O. G. Aniskina, I. A. Statnaya, M. A. Motsakov, and A. I. Pogoreltsev, “Simulation of the ENSO influence on the extra-tropical middle atmosphere,” Earth Planets Space 71, 8 (2019). https://doi.org/10.1186/s40623-019-0987-9

    Article  Google Scholar 

  25. N. M. Gavrilov, A. V. Koval, A. I. Pogoreltsev, and E. N. Savenkova, “Simulating influences of QBO phases and orographic gravity wave forcing on planetary waves in the middle atmosphere,” Earth Planets Space 67, 86 (2015). https://doi.org/10.1186/s40623-015-0259-2

    Article  Google Scholar 

  26. A. V. Koval, W. Chen, K. A. Didenko, T. S. Ermakova, N. M. Gavrilov, A. I. Pogoreltsev, O. N. Toptunova, K. Wei, A. N. Yarusova, and A. S. Zarubin, “Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events,” Ann. Geophys. 39, 357–368 (2021). https://doi.org/10.5194/angeo-39-357-2021

    Article  Google Scholar 

  27. N. M. Gavrilov, A. I. Pogorel’tsev, and Jacobi, C., “Numerical modeling of the effect of latitude-inhomogeneous gravity waves on the circulation of the middle atmosphere,” Izv., Atmos. Ocean. Phys. 41 (1), 9–18 (2005).

    Google Scholar 

  28. A. I. Pogorel’tsev, E. N. Savenkova, and N. N. Pertsev, “Sudden stratospheric warmings: the role of normal atmospheric modes,” Geomagn. Aeron. (Engl. Transl.) 52 (2), 357–372 (2014).

  29. R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981).

    Article  Google Scholar 

  30. E. Yiǧit and A. S. Medvedev, “Heating and cooling of the thermo-sphere by internal gravity waves,” Geophys. Res. Lett. 36, L14807 (2009). https://doi.org/10.1029/2009GL038507

    Article  Google Scholar 

  31. N. M. Gavrilov and A. V. Koval, “Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics,” Izv., Atmos. Ocean. Phys. 49 (3), 244–251 (2013).

    Article  Google Scholar 

  32. A. van Niekerk, I. Sandu, A. Zadra, E. Bazile, T. Kanehama, M. Kohler, M.-S. Koo, H.-J. Choi, Y. Kuroki, M. D. Toy, S. B. Vosper, and V. Yudin, “COnstraining ORographic Drag Effects (COORDE): A model comparison of resolved and parametrized orographic drag,” J. Adv. Model. Earth Syst. 12 (11), e2020MS002160 (2020).

  33. R. Swinbank and A. O' Neill, “Stratosphere–troposphere assimilation system,” Month. Weather Rev. 122, 686–702 (1994).

    Article  Google Scholar 

  34. A. A. Scaife, J. Austin, N. Butchart, S. Pawson, M. Keil, J. Nash, and I. N. James, “Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analysis,” Q. J. R. Meteorol. Soc. 126, 2585–2604 (2000).

    Article  Google Scholar 

  35. S. Yoden, “An illustrative model of seasonal and interannual variations of the stratospheric circulation,” J. Atmos. Sci. 47, 1845–1853 (1990).

    Article  Google Scholar 

  36. J. R. Holton and C. Mass, “Stratospheric vacillation cycles,” J. Atmos. Sci. 33 (11), 2218–2225 (1976).

    Article  Google Scholar 

  37. T. Birner and H. Bönisch, “Residual circulation trajectories and transit times into the extratropical lowermost stratosphere,” Atmos. Chem. Phys. 11, 817–827 (2011). https://doi.org/10.5194/acp-11-817-2011

    Article  Google Scholar 

  38. J. Eluszkiewicz, D. Crisp, R. Zurek, L. Elson, E. Fishbein, L. Froidevaux, J. Waters, R. G. Grainger, A. Lambert, R. Harwood, and G. Peckham, “Residual circulation in the stratosphere and lower mesosphere as diagnosed from microwave limb sounder data,” J. Atmos. Sci. 53 (2), 217–240 (1996).

    Article  Google Scholar 

  39. J. C. Gille, L. V. Lyjak, and A. Smith, “The global residual mean circulation in the middle atmosphere for the northern winter period,” J. Atmos. Sci. 44 (10), 1437–1452 (1987).

    Article  Google Scholar 

  40. N. M. Gavrilov, A. V. Koval, A. I. Pogorel’tsev, and E. N. Savenkova, “Numerical simulation of wave interactions during sudden stratospheric warming,” Izv., Atmos. Ocean. Phys. 53 (6), 592–602 (2017). https://doi.org/10.1134/S0001433817060044

    Article  Google Scholar 

  41. L. J. Gray, “A model study of the influence of the quasi-biennial oscillation on trace gas distributions in the middle and upper stratosphere,” J. Geophys. Res.: Atmos. 105, 4539–4551 (2000). https://doi.org/10.1029/1999JD900320

    Article  Google Scholar 

  42. K. K. Tung and H. Yang, “Global QBO in circulation and ozone, II. A simple mechanistic model,” J. Atmos. Sci. 51, 2708–2721 (1994).

    Article  Google Scholar 

  43. F. Hansen, K. Matthes, and L. J. Gray, “Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry-climate model WACCM,” J. Geophys. Res.: Atmos. 118 (18), 10464–10474.

  44. R. E. Dickinson, “Planetary Rossby waves propagating vertically through weak westerly wave guides,” J. Atmos. Sci. 25, 984–1002 (1968).

    Article  Google Scholar 

  45. A. V. Koval, N. M. Gavrilov, and A. I. Pogorel’tsev, “Sensitivity of meridional mean circulation to the impact of orographic waves at different phases of quasi-biennial oscillations in a numerical model of the middle atmosphere,” Russ. J. Phys. Chem. B 13 (7), 674–680 (2019). https://doi.org/10.1134/S1990793119040092

    Article  Google Scholar 

Download references

Funding

The simulations of general circulation, statistical processing of data ensembles, and calculation of meridional circulation were supported by the Russian Science Foundation, project no. 20-77-10006. The OGW parametrization in the MUAM model was upgraded in the Laboratory of Ozone Layer and Upper Atmosphere Research of the St. Petersburg State University and supported by the Ministry of Education and Science of the Russian Federation, contract no. 075-15-2021-583.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Koval, N. M. Gavrilov or A. I. Pogoreltsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, A.V., Gavrilov, N.M., Pogoreltsev, A.I. et al. Modeling Residual Meridional Circulation at Different Phases of the Quasi-Biennial Oscillation. Izv. Atmos. Ocean. Phys. 58, 22–29 (2022). https://doi.org/10.1134/S0001433822010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822010054

Keywords:

Navigation