Skip to main content
Log in

Statistical Analysis of Monitoring the Results of the Radon Level and Meteorological Parameters in the Buildings of Geophysical Stations in Azerbaijan

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, we present a statistical analysis of the results of monitoring the radon content and meteorological parameters (atmospheric pressure, temperature, and humidity) in the buildings of three stationary geophysical stations in Azerbaijan (Sheki, Shamakhi, and Kurdemir) from April 1, 2016 to September 30, 2017 and the level of their interrelation. The studied database included 13 152 measurement complexes with an hourly interval. Short-term (intraday) and medium-term (intra-annual) changes in the parameters and the correlation dependence between them are considered. Radon fluctuations at various stations are generally ambiguous due to the different geological conditions at their location and the building construction. The statistical analysis of the data for the entire observation period showed a weak correlation between the radon content and climatic parameters. However, according to the monthly average values for 2017, there is a positive correlation between changes in the radon levels and the humidity in the air at all three stations during the year while, a decrease in atmospheric pressure and an increase in air temperature are accompanied by an increase in the radon concentration in the buildings of the Shamakhi and Sheki stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Aliev, Ch.S., Feizullaev, A.A., Bagirli, R.D., and Makhmudova, F.F., Radon distributions in buildings and geological media in Azerbaijan, GeoRisk, 2016, vol. 4, no. 3, pp. 2–41.

    Google Scholar 

  2. Aliyev, Ch.S., Feyzullayev, A.A., Baghirli, R.J., and Mahmudova, F.F., Results of measurements of radon volume activity in Azerbaijan, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 7, pp. 654–660. https://doi.org/10.1134/S0001433818070022

    Article  Google Scholar 

  3. Climent, H., Tokonami, S., and Furukawa, M., Statistical analysis applied to radon and natural events, Proc. Int. Workshop on Radon in the Living Environment, Athens, 1999, pp. 241–254.

  4. Coburn, T.C., Correlation and regression analysis, Development Geology Reference Manual, Morton-Thompson, D. and Woods, A.M., Eds., Tulsa, Oklahoma: American Association of Petroleum Geologists, 1992, pp. 343–344.

  5. Cohen, B.L. and Gromicko, N., Variation of radon levels in U.S. homes with various factors, J. Air Pollut. Control Assoc., 1988, vol. 38, no. 2, pp. 129–134.

    Google Scholar 

  6. Denman, A., Crockett, R., Groves-Kirkby, C.J., Phillips, P.S., Gillmore, G.K., and Woolridge, A.C., Are seasonal correction factors useful in assessing the health risk from domestic radon, Proc. of the Conference of the Institute for Robotic Process Automation, Paris, 2006, id 078.

  7. Dolejs, J. and Hulka, J., The weekly measurement deviations of indoor radon concentration from the annual arithmetic mean, Radiat. Prot. Dosim., 2003, vol. 104, pp. 253–258.

    Article  Google Scholar 

  8. Duggal, V., Rani, A., Mehra, R., and Ramoal, R.C., Assessment of natural radioactivity levels and associated dose rates in soil samples from northern Rajasthan, India, Radiat. Prot. Dosim., 2014, vol. 158, no. 2, pp. 235–240.

    Article  Google Scholar 

  9. Filipović, J., Maletić, D.M., Udovičić, V.I., Banjanac, R.M., Joković, D.R., Savić, M.R., and Veselinović, N.B., The use of multivariate analysis of the radon variability in the underground laboratory and indoor environment, Nukleonika, 2016, vol. 61, no. 3, pp. 357–360.

    Article  Google Scholar 

  10. Groves-Kirkby, C.J., Denman, A.R., Crockett, R.G.M., Phillips, P.S., and Gillmore, G.K., Identification of tidal and climatic influences within domestic radon time-series from Northamptonshire, UK, Sci. Total Environ., 2006, vol. 367, no. 1, pp. 191–202.

    Article  Google Scholar 

  11. Groves-Kirkby, C.J., Crockett, R.G.M., Denman, A.R., and Phillips, P.S., Climatic and seasonal influences on radon time series in an environment of low anthropogenic activity, 2012. https://www.semanticscholar.org/paper/ Climatic-and-seasonal-influences-on-radon-time-in-Groves-Kirkby-Crockett/be6cb8b544aa5cc37af99c32d0 aff8a6d23a1fc1.

  12. Hauri, D.D., Huss, A., Zimmermann, F., Claudia, E.K., and Roosli, M., A prediction model for assessing residential radon concentration in Switzerland, J. Environ. Radioact., 2012, vol. 112, pp. 83–89.

    Article  Google Scholar 

  13. Hernandez, T.L., Ring, J.W., and Sachs, H.M., The variation of basement radon concentrations with barometric pressure, Health Phys., 1984, vol. 46, pp. 440–445.

    Google Scholar 

  14. Hintenlang, D.E. and Al-Ahmady, K.K., Pressure differentials for radon entry coupled to periodic atmospheric pressure variations, Indoor Air, 1992, vol. 2, pp. 208–215.

    Article  Google Scholar 

  15. Hofman, M., Aliyev, Ch., Feyzullayev, A., Bagirli, R., Veliyeva, F., Pampuri, L., Valsangiacomo, C., Tollefsen, T., and Cinelli, G., First map of residential indoor radon measurements in Azerbaijan, Radiat. Prot. Dosim., 2016, vol. 160, pp. 1–8.

    Google Scholar 

  16. Il’nitskii, A.P., Kantserogennaya opasnost' v dome (Carcinogenic Hazard in Homes), Moscow: Vlad. MO, 1996.

  17. Klotz, J.B., Schoenberg, J.B., and Wilcox, H.B., Relationship among short- and long-term radon measurements within dwellings: Influence of radon concentrations, Health Phys., 1993, vol. 5, pp. 367–374.

    Article  Google Scholar 

  18. Letourneau, E.G., et al., Levels of radon gas in Winnipeg homes, Radiat. Prot. Dosim., 1992, vol. 45, pp. 531–534.

    Article  Google Scholar 

  19. Maletić, D.M., Udovičić, V.I., Banjanac, R.M., et al., Comparison of multivariate classification and regression methods for indoor radon measurements, Nucl. Technol. Radiat. Prot., 2014, vol. 29, pp. 17–23.

    Article  Google Scholar 

  20. Miles, J.C.H., Mapping radon-prone areas by lognormal modelling of house radon data, Health Phys., 1998, vol. 74, pp. 370–378.

    Article  Google Scholar 

  21. Nazaro, W.W. and Doyle, S.M., Radon entry into houses having a crawlspace, Health Phys., 1985, vol. 48, pp. 265–281.

    Article  Google Scholar 

  22. Nazaro, W.W., Feustel, H., Nero, A.V., Revzan, K.L., Grimsrud, D.T., Essling, M.A., and Toohey, R.E., Radon transport into a detached one-storey house with a basement, Atmos. Environ., 1985, vol. 9, pp. 31–46.

    Article  Google Scholar 

  23. Palii, I.A., Prikladnaya statistika: Uch. posobie (Applied Statistics: A Manual) Omsk: SibADI, 2003.

  24. Park, J.H., Lee, C.M., Lee, H.Y., and Kang, D.R., Estimation of seasonal correction factors for indoor radon concentrations in Korea, Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 2251, pp. 1–13. https://doi.org/10.3390/ijerph15102251

    Article  Google Scholar 

  25. Robinson, A.L., Sextro, R.G., and Fisk, W.J., Soil-gas entry into an experimental basement driven by atmospheric pressure fluctuation measurements, spectral analysis, and model comparison, Atmos. Environ., 1997, vol. 31, no. 10, pp. 1477–1485.

    Article  Google Scholar 

  26. Ruano-Ravina, A., Castro-Bernardez, M., Sande-Meijide, M., Vargas, A., and Barros-Dios, J.M., Short- versus long-term radon detectors: A comparative study in Galicia, NW Spain, J. Environ. Radioact., 2008, vol. 99, pp. 1121–1126.

    Article  Google Scholar 

  27. Shafer, D.S., McGraw, D., Karr, L.H., McCurdy, G., Kluesner, T.L., Gray, K.J., and Tappen, J., Comparison of ambient radon concentrations in air in the Northern Mojave desert from continuous and integrating instruments, U.S. Department of Energy Office of Scientific and Technical Information Tech. Rep. no. 45232, 2010. https://doi.org/10.2172/1009522

  28. Steck, D.J., A comparison of EPA screening measurements and annual 222Rn concentrations in statewide surveys, Health Phys., 1990, vol. 58, pp. 523–530.

    Google Scholar 

  29. Tchorz-Trzeciakiewicz, D.E. and Kłos, M., Factors affecting atmospheric radon concentration, human health, Sci. Total Environ., 2017, vols. 584–585, pp. 911–920. https://doi.org/10.1016/j.scitotenv.2017.01.137

    Article  Google Scholar 

  30. Turk, B.H., Barometric Pumping of Radon into Buildings, Mountain West Technical Associates, 1990.

    Google Scholar 

  31. Udovičić, V.I., Maletić, D.M., Banjanac, R.M., Joković, D.R., Dragić, A.L., Veselinović, N.B., Živanović, J.Z., Savić, M.R., and Fokari, S.M., Multiyear indoor radon variability in family hose: A case study in Serbia, Nucl. Tech. Radiat. Prot., 2018, vol. 33, no. 2, pp. 174–179.

    Article  Google Scholar 

  32. Wysocka, M., Chalupnik, S., Skowronek, J., and Mielnikow, A., Comparison between short- and long-term measurements of radon concentration in dwellings of Upper Silesia (Poland), J. Min. Sci., 2004, vol. 40, no. 4, pp. 417–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Feyzullayev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyzullayev, A.A., Aliyev, C.S., Mardanov, M.J. et al. Statistical Analysis of Monitoring the Results of the Radon Level and Meteorological Parameters in the Buildings of Geophysical Stations in Azerbaijan. Izv. Atmos. Ocean. Phys. 55, 893–904 (2019). https://doi.org/10.1134/S0001433819080036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819080036

Keywords:

Navigation