Skip to main content
Log in

Optimal Control of Aerosol Emissions into the Stratosphere to Stabilize the Earth’s Climate

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The problem of the optimal control of aerosol emissions into the stratosphere to stabilize the Earth’s climate is considered based on the zero-dimensional energy balance model. The global surface-temperature deviation from the undisturbed value is the state variable, and the albedo of the artificial aerosol layer, whose time variations are functionally related to the change in the total mass of aerosol particles and, consequently, the rate of their emissions, is the control variable. The problem is solved with and without consideration for the system phase path and control variable constraints for the given performance measure (objective function). Unlike previous studies, the aerosol emission scenarios are not set a priori, but represent a rigorous solution of the optimal control problem, ensuring the minimization of the objective function. The method is illustrated using the RCP8.5 scenario of growing concentration of greenhouse gases in the atmosphere. The approach considered in this paper can be easily extended to the cases of applying other known methods of climate engineering to manipulate the climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Cambridge University Press, Cambridge, 2013).

  2. Yu. A. Izrael, “An efficient way to regulate global climate is the maingoal of the climate problem solution,” Russ. Meteorol. Hydrol. 30 (10), 1–4 (2005).

    Google Scholar 

  3. T. M. Wigley, “A combined mitigation/geoengineering approach to climate stabilization,” Science 314, 452–455 (2006).

    Article  Google Scholar 

  4. M. C. MacCracken, “On the possible use of geoengineering to moderate specific climate change impacts,” Environ. Res. Lett. 4, 1–14 (2009).

    Article  Google Scholar 

  5. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Global warming mitigation by means of controlled aerosol emissions into the stratosphere: Global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations,” Atmos. Ocean. Opt. 22 (4), 388–395 (2009).

    Article  Google Scholar 

  6. A. V. Eliseev and I. I. Mokhov, “Estimating the efficiency of mitigating and preventing global warming with scenarios of controlled aerosol emissions into the stratosphere,” Izv., Atmos. Ocean. Phys. 45 (2), 221–232 (2009).

    Article  Google Scholar 

  7. A. V. Chernokul’skii, A. V. Eliseev and I. I. Mokhov, “Analytical estimations of the efficiency of climate warming prevention by controlled aerosol emissions into the stratosphere,” Russ. Meteorol. Hydrol. 35 (5), 301–309 (2010).

    Article  Google Scholar 

  8. J. Shepherd, K. Caldeira, J. Haigh, D. Keith, B. Launder, G. Mace, G. MacKerron, J. Pyle, S. Rayner, C. Redgwell, P. Cox, and A. Watson, Geoengineering the Climate: Science, Governance and Uncertainty (The Royal Society, London, 2009).

    Google Scholar 

  9. B. Launder and J. M. T. Thompson, Geo-Engineering Climate Change: Environmental Necessity Or Pandora’s Box? (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  10. J. Goodell, How to Cool the Planet: Geoengineering and the Audacious Quest to Fix Earth’s Climate (Mariner Books, Boston, 2011).

    Google Scholar 

  11. T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?,” Renewable Sustainable Energy Rev. 31, 792–834 (2014).

    Article  Google Scholar 

  12. D. Keith, A Case for Climate Engineering (MIT, Boston, 2013).

    Google Scholar 

  13. A. C. Jones, J. M. Haywood, and A. Jones, “Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection,” Atmos. Chem. Phys. 16, 2843–2862 (2016).

    Article  Google Scholar 

  14. J. Stilgoe, Experiment Earth: Responsible Innovation in Geoengineering (Routledge, London–New York, 2015).

    Book  Google Scholar 

  15. J. Stilgoe, “Geoengineering as collective experimentation,” Sci. Eng. Ethics 22 (3), 851–869 (2016).

    Article  Google Scholar 

  16. P. Crutzen, “Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?,” Clim. Change 77, 211–220 (2006).

    Article  Google Scholar 

  17. P. J. Rasch, S. Tilmes, R. Turco, A. Robock, L. Oman, C.-C. Chen, G. L. Stenchikov, and R. R. Garcia, “An overview of geoengineering of climate using stratospheric sulphate aerosols,” Philos. Trans. R. Soc. A 366, 4007–4037 (2008).

    Article  Google Scholar 

  18. A. Robock, A. Marquardt, B. Kravitz, and G. Stenchikov, “Benefits, risks, and costs of stratospheric geoengineering,” Geophys. Res. Lett. 36, D19703 (2009).

    Article  Google Scholar 

  19. F. G. Pope, P. Braesicke, R. G. Grainger, M. Kalberer, I. M. Watson, P. J. Davidson, and R. A. Cox, “Stratospheric aerosol particles and solar-radiation management,” Nature Clim. Change 2, 713–719 (2012).

    Article  Google Scholar 

  20. V. P. Parkhomenko, “Modeling the global climate stabilization by controlled stratospheric aerosol emissions,” Mat. Model. Chisl. Metody., No. 2, 115–126 (2014).

    Google Scholar 

  21. A. Robock, “The mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effect,” Science 212 (4501), 1383–1384 (1981).

    Article  Google Scholar 

  22. M. I. Budyko, “Method of influencing the climate,” Meteorol. Gidrol., No. 2, 91–97 (1974).

    Google Scholar 

  23. V. Brovkin, V. Petoukhov, M. Claussen, E. Bauer, D. Archer, and C. Jaeger, “Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure,” Clim. Change 92, 243–259 (2009).

    Article  Google Scholar 

  24. A. Jarvis and D. Leedal, “The Geoengineering Model Intercomparison Project (GeoMIP): a Control Perspective,” Atmos. Sci. Lett 13, 157–163 (2012).

    Article  Google Scholar 

  25. B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J.M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe, “The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results,” Geosci. Model Dev. 8, 3379–3392 (2015).

    Article  Google Scholar 

  26. M. Meinshausen, S. J. Smith, K. Calvin, et al., “The RCP greenhouse gas concentrations and their extensions from 1765 to 2300,” Clim. Change 109, 213–241 (2011).

    Article  Google Scholar 

  27. D. V. Gaskarov, V. B. Kiselev, S. A. Soldatenko, and R. M. Yusupov, Introduction to Geophysical Cybernetics (SPbGUVK, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  28. S. Soldatenko and R. Yusupov, “An optimal control problem formulation for the atmospheric large-scale wave dynamics,” Appl. Math. Sci. 9, 875–884 (2015).

    Google Scholar 

  29. S. Soldatenko and R. Yusupov, “On the possible use of geophysical cybernetics in climate manipulation (geoengineering) and weather modification,” WSEAS Trans. Environ. Dev. 11, 116–125 (2015).

    Google Scholar 

  30. S. Soldatenko and R. Yusupov, “The determination of feasible control variables for geoengineering and weather modification based on the theory of sensitivity in dynamical systems,” J. Control Sci. Eng., id 1547462 (2016).

    Google Scholar 

  31. S. A. Soldatenko, “Weather and climate manipulation as an optimal control for adaptive dynamical systems,” Complexity, id 4615072 (2017).

    Google Scholar 

  32. S. Soldatenko and R. Yusupov, “Choice of control parameters for modeling the targeted modification of weather–climate processes,” Tr. SPIIRAN, No. 44, 153–180 (2016).

    Google Scholar 

  33. K. K. Tung, “Simple climate modelling,” Discrete Contin. Dyn. Syst. 7, 651–660 (2007).

    Article  Google Scholar 

  34. S. Soldatenko and R. Yusupov, “Zero-dimensional climate model sensitivities and feedbacks in the context of the problem of the Earth’s weather and climate control,” Tr. SPIIRAN, No. 52, 5–31 (2017).

    Google Scholar 

  35. J. Hansen, M. Sato, R. Ruedy, et al., “Efficacy of climate forcing,” J. Geophys. Res. 110, D18104 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Soldatenko.

Additional information

Original Russian Text © S.A. Soldatenko, R.M. Yusupov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 5, pp. 566–574.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, S.A., Yusupov, R.M. Optimal Control of Aerosol Emissions into the Stratosphere to Stabilize the Earth’s Climate. Izv. Atmos. Ocean. Phys. 54, 480–486 (2018). https://doi.org/10.1134/S0001433818050122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818050122

Keywords

Navigation