Skip to main content
Log in

Two-color resonance photoionization spectrum of nickelocene in a supersonic jet

  • Molecular Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Two-color photoionization of nickelocene molecules cooled in a supersonic jet is performed using a tunable nanosecond pulsed laser. The first stage of the multiphoton excitation is the transition from the highest occupied molecular orbital of nickelocene to the lowest Rydberg level. Conditions are found under which molecular ions (η 5-C5H5)2Ni+ are the only product of the multiphoton ionization in the one-color experiment. Irradiation of an excited molecule by an intense pulse of another laser increases significantly the yield of molecular ions. The dependence of the yield of (η5-C5H5)2Ni+ ions on the frequency of the second laser makes it possible to determine the adiabatic ionization potential of nickelocene as 6.138±0.012eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comprehensive Organometallic Chemistry, Ed. by E. W. Abel, F. G. A. Stone, and G. Wilkinson (Pergamon, Oxford, 1982), Vols. 3–6.

    Google Scholar 

  2. Comprehensive Organometallic Chemistry II, Ed. by E. W. Abel, F. G. A. Stone, and G. Wilkinson (Pergamon, Oxford, 1995), Vols. 5–9.

    Google Scholar 

  3. K. D. Warren, Struct. Bonding (Berlin) 27, 45 (1976).

    Google Scholar 

  4. J. C. Green, Struct. Bonding (Berlin) 43, 37 (1981).

    Google Scholar 

  5. J. G. Eden, Photochemical Vapor Deposition (Wiley, New York, 1992).

    Google Scholar 

  6. U. Boesl, H. J. Neusser, and E. W. Schlag, Z. Naturforsch. A 33, 1546 (1978).

    Google Scholar 

  7. S. H. Lin, Y. Fujimura, H. J. Neusser, and E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, New York, 1984).

    Google Scholar 

  8. V. S. Letokhov, Laser Photoionization Spectroscopy (Nauka, Moscow, 1987; Academic, Orlando, 1987).

    Google Scholar 

  9. E. W. Schlag, ZEKE Spectroscopy (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  10. P. C. Engelking, Chem. Phys. Lett. 74, 207 (1980).

    Article  ADS  Google Scholar 

  11. S. Leutwyler, U. Even, and J. Jortner, Chem. Phys. Lett. 74, 11 (1980).

    Article  ADS  Google Scholar 

  12. S. Leutwyler, U. Even, and J. Jortner, J. Phys. Chem. 85, 3026 (1981).

    Article  Google Scholar 

  13. S. Leutwyler, U. Even, and J. Jortner, Chem. Phys. 58, 409 (1981).

    Article  Google Scholar 

  14. S. Niles, D. A. Prinslow, C. A. Wigth, and P. B. Armentrout, J. Chem. Phys. 97, 3115 (1992).

    Article  ADS  Google Scholar 

  15. Y. Nagano, Y. Achiba, and K. Kimura, J. Phys. Chem. 90, 1288 (1986).

    Article  Google Scholar 

  16. U. Ray, H. Q. Hou, Z. Zhang, et al., J. Chem. Phys. 90, 4248 (1989).

    Article  ADS  Google Scholar 

  17. H. T. Liou, Y. Ono, P. C. Engelking, and J. T. Moseley, J. Phys. Chem. 90, 2888 (1986).

    Article  Google Scholar 

  18. H. T. Liou, P. C. Engelking, Y. Ono, and J. T. Moseley, J. Phys. Chem. 90, 2892 (1986).

    Article  Google Scholar 

  19. C. Grun, C. Weickhardt, and J. Grotemeyer, Eur. Mass Spectrom. 2, 197 (1996).

    Article  Google Scholar 

  20. M. Clara, J. E. Braun, T. Hellerer, and H. J. Neusser, Int. J. Mass Spectrom. 203, 71 (2000).

    Article  Google Scholar 

  21. J. Opitz, D. Bruch, and G. Bünau, Org. Mass Spectrom. 28, 405 (1993).

    Article  Google Scholar 

  22. J. Opitz and P. Härter, Int. J. Mass. Spectrom. Ion Processes 121, 183 (1992).

    Article  Google Scholar 

  23. M. Clara and H. J. Neusser, Phys. Chem. A 105, 5577 (2001).

    Article  Google Scholar 

  24. P. T. Muraoka, D. Byun, and J. I. Zink, J. Phys. Chem. A 105, 8665 (2001).

    Article  Google Scholar 

  25. J. Jortner and S. Leach, J. Chim. Phys. Phys.-Chim. Biol. 77, 7 (1980).

    Google Scholar 

  26. J. Jortner and S. Leach, J. Chim. Phys. Phys.-Chim. Biol. 77, 43 (1980).

    Google Scholar 

  27. J. Jortner and G. C. Morris, J. Chem. Phys. 51, 3689 (1969).

    Article  ADS  Google Scholar 

  28. S. Yu. Ketkov, G. A. Domrachev, and G. A. Razuvaev, Opt. Spektrosk. 62, 227 (1987) [Opt. Spectrosc. 62, 138 (1987)].

    Google Scholar 

  29. S. Yu. Ketkov, G. A. Domrachev, and G. A. Razuvaev, Opt. Spektrosk. 63, 284 (1987) [Opt. Spectrosc. 63, 167 (1987)].

    Google Scholar 

  30. S. Yu. Ketkov, G. A. Domrachev, and S. N. Titova, Metalloorg. Khim. 3(1), 74 (1990).

    Google Scholar 

  31. S. Yu. Ketkov and G. A. Domrachev, Inorg. Chim. Acta 178, 233 (1990).

    Article  Google Scholar 

  32. S. Yu. Ketkov, Opt. Spektrosk. 72, 1088 (1992) [Opt. Spectrosc. 72, 595 (1992)].

    Google Scholar 

  33. S. Yu. Ketkov, Doctoral Dissertation in Chemistry (Inst. of Organometallic Chemistry, Russian Academy of Sciences, Nizhni Novgorod, 2000).

    Google Scholar 

  34. S. Yu. Ketkov, Phys. Chem. Chem. Phys. 5, 451 (2003).

    Article  Google Scholar 

  35. S. Yu. Ketkov, H. L. Selzle, E. W. Schlag, and G. A. Domrachev, J. Phys. Chem. A 107, 4041 (2003).

    Article  Google Scholar 

  36. E. W. Schlag and H. L. Selzle, J. Chem. Soc., Faraday Trans. 86, 2511 (1990).

    Article  Google Scholar 

  37. W. Scherzer, H. L. Selzle, and E. W. Schlag, Chem. Phys. Lett. 195, 11 (1992).

    Article  ADS  Google Scholar 

  38. G. I. Nemeth, H. L. Selzle, and E. W. Schlag, Chem. Phys. Lett. 215, 151 (1993).

    Article  ADS  Google Scholar 

  39. C. Alt, W. Scherzer, H. L. Selzle, and E. W. Schlag, Chem. Phys. Lett. 224, 336 (1994).

    Article  ADS  Google Scholar 

  40. J. J. Eish and R. B. King, Organometallic Syntheses (Academic, New York, 1965), Vol. 1.

    Google Scholar 

  41. CRC Handbook of Chemistry and Physics, Ed. by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, 1983).

    Google Scholar 

  42. P. Borrel and E. Henderson, Inorg. Chim. Acta 12, 215 (1975).

    Article  Google Scholar 

  43. J. W. Rabalais, L. O. Werme, T. Bergmark, et al., J. Chem. Phys. 87, 1185 (1972).

    Article  ADS  Google Scholar 

  44. D. W. Clack and K. D. Warren, Struct. Bonding (Berlin) 39, 1 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 97, No. 4, 2004, pp. 605–610.

Original Russian Text Copyright © 2004 by Ketkov, Selzle, Schlag, Titova, Kalakutskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketkov, S.Y., Selzle, H.L., Schlag, E.W. et al. Two-color resonance photoionization spectrum of nickelocene in a supersonic jet. Opt. Spectrosc. 97, 567–571 (2004). https://doi.org/10.1134/1.1813698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1813698

Keywords

Navigation