Skip to main content
Log in

The temperature of nonspherical circumstellar dust grains

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b≤10 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio T d(spheroid)/T d(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b≈2, the temperature differences do not exceed 10%. If a/b≥4, the temperatures can differ by 30–40%. For a fixed dust mass in the medium, the fluxes at wavelengths λ≥100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bagnulo, J. G. Doyle, and I. P. Griffin, Astron. Astrophys. 301, 501 (1995).

    ADS  Google Scholar 

  2. Y. Baron, M. de Muizon, R. Papoular, and B. Pégourié, Astron. Astrophys. 186, 271 (1987).

    ADS  Google Scholar 

  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  4. B. J. Cadwell, H. Wang, E. D. Feigelson, and M. Frenklach, Astrophys. J. 429, 285 (1994).

    Article  ADS  Google Scholar 

  5. A. Z. Dolginov, Yu. N. Gnedin, and N. A. Silant'ev, Propagation and Polarization of Radiation in Cosmic Medium (Nauka, Moscow, 1979).

    Google Scholar 

  6. V. A. Dombrovskii, Dokl. Akad. Nauk Armyan. SSR 10, 199 (1949).

    Google Scholar 

  7. B. T. Draine, in Physical Processes in Red Giants, Ed. by I. Iben and A. Renzini (Reidel, Dordrecht, 1981), p. 317.

    Google Scholar 

  8. H. M. Dyck and M. C. Jennings, Astron. J. 76, 431 (1971).

    ADS  Google Scholar 

  9. Yu. A. Fadeyev, in Circumstellar Matter: IAU Symp. No. 122, Ed. by I. Appenzeller and C. Jordan (Reidel, Dordrecht, 1987), p. 515.

    Google Scholar 

  10. D. P. Finkbeiner and D. J. Schlegel, astro-ph/9907307.

  11. A. J. Fleischer, A. Gauger, and E. Sedlmayr, Astron. Astrophys. 266, 321 (1992).

    ADS  Google Scholar 

  12. M. E. Fogel and C. M. Leung, Astrophys. J. 501, 175 (1998).

    Article  ADS  Google Scholar 

  13. H.-P. Gail and E. Sedlmayr, Astron. Astrophys. 132, 163 (1984).

    ADS  Google Scholar 

  14. H.-P. Gail and E. Sedlmayr, Astron. Astrophys. 148, 183 (1985).

    ADS  Google Scholar 

  15. J. H. Goebel and H. Moseley, Astrophys. J. Lett. 290, L35 (1985).

    Article  ADS  Google Scholar 

  16. J. M. Greenberg, Interstellar Grains in Stars and Stellar Systems, vol. VII, Ed. by B.M. Middlehurst and L.H. Aller (Univ. Chicago, 1968; Mir, Moscow, 1970).

  17. J. M. Greenberg, Astron. Astrophys. 12, 240 (1971).

    ADS  Google Scholar 

  18. J. M. Greenberg and G. A. Shah, Astron. Astrophys. 12, 250 (1971).

    ADS  Google Scholar 

  19. Th. Henning, V. B. Il'in, N. A. Krivova, et al., Astron. Astrophys., Suppl. Ser. 136, 405 (1999).

    Article  ADS  Google Scholar 

  20. R. H. Hildebrand, Quart. J. R. A. S. 24, 267 (1983).

    ADS  Google Scholar 

  21. W. A. Hiltner, Science 109, 165 (1949).

    ADS  Google Scholar 

  22. T. S. Hall, Science 109, 166 (1949).

    ADS  Google Scholar 

  23. V. B. Il'in and N. V. Voshchinnikov, Astron. Astrophys., Suppl. Ser. 128, 187 (1998).

    Article  ADS  Google Scholar 

  24. C. Jäger, H. Mutschke, and Th. Henning, Astron. Astrophys. 332, 291 (1998).

    ADS  Google Scholar 

  25. C. Jäger, H. Mutshcke, B. Begemann, et al., Astron. Astrophys. 292, 641 (1994).

    ADS  Google Scholar 

  26. M. Jura, Astrophys. J. 434, 713 (1994).

    Article  ADS  Google Scholar 

  27. M. Jura, Astrophys. J. 472, 806 (1996).

    Article  ADS  Google Scholar 

  28. J.-P. J. Lafon and N. Berruyer, Astron. Astrophys. Rev. 2, 249 (1991).

    Article  ADS  Google Scholar 

  29. P. L. Lamy and J.-M. Perrin, Astron. Astrophys. 327, 1147 (1997).

    ADS  Google Scholar 

  30. I. Little-Marenin, Astrophys. J. Lett. 307, L15 (1986).

    Article  ADS  Google Scholar 

  31. S. Lorenz-Martins and J. Lefevre, Astron. Astrophys. 291, 831 (1994).

    ADS  Google Scholar 

  32. J. S. Mathis, P. G. Mezger, and N. Panagia, Astron. Astrophys. 128, 212 (1983).

    ADS  Google Scholar 

  33. T. Onaka, Astrophys. J. 533, 298 (2000).

    Article  ADS  Google Scholar 

  34. V. Ossenkopf and Th. Henning, Astron. Astrophys. 291, 943 (1994).

    ADS  Google Scholar 

  35. V. Ossenkopf, Th. Henning, and J. S. Mathis, Astron. Astrophys. 261, 567 (1992).

    ADS  Google Scholar 

  36. B. Pégourié, Astrophys. Space Sci. 136, 133 (1987).

    ADS  Google Scholar 

  37. S. J. Shawl, Astron. J. 80, 602 (1975).

    ADS  Google Scholar 

  38. R. Siebenmorgen, E. Krügel, and R. Chini, Astron. Astrophys. 351, 495 (1999).

    ADS  Google Scholar 

  39. L. Spitzer, Jr., Physical Processes in Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  40. H. C. van de Hulst, Rech. Astron. Obs. Utrecht 11, Part 2 (1949).

  41. N. V. Voshchinnikov, Itogi Nauki Tekh., Ser. Issled. Kosm. Prostranstva 25, 98 (1986).

    Google Scholar 

  42. N. V. Voshchinnikov and V. G. Farafonov, Astrophys. Space Sci. 204, 19 (1993).

    Article  ADS  Google Scholar 

  43. N. V. Voshchinnikov, D. A. Semenov, and Th. Henning, Astron. Astrophys. 349, L25 (1999).

    ADS  Google Scholar 

  44. N. V. Voshchinnikov, V. B. Il'in, Th. Henning, et al., J. Quant. Spectrosc. Radiat. Transf. 65, 877 (2000).

    Article  Google Scholar 

  45. L. B. F. M. Waters, F. J. Molster, and C. Waelkens, in Solid Interstellar Matter: the ISO Revolution, Ed. by L. d'Hendecourt et al. (Springer-Verlag, Berlin, 1999), p. 219.

    Google Scholar 

  46. D. C. B. Whittet, in Dust in the Galactic Environments (Institute of Physics Publ., New York, 1992).

    Google Scholar 

  47. A. P. Whitworth, H. M. J. Boffin, and N. Francis, Mon. Not. R. Astron. Soc. 299, 554 (1998).

    Article  ADS  Google Scholar 

  48. P. Woitke, C. Dominik, and E. Sedlmayr, Astron. Astrophys. 274, 451 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory of Gennadii Borisovich Sholomitski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), an enthusiast for research in the field of infrared and submillimeter astronomy.

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 26, No. 10, 2000, pp. 787–800.

Original Russian Text Copyright © 2000 by Voshchinnikov, Semenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voshchinnikov, N.V., Semenov, D.A. The temperature of nonspherical circumstellar dust grains. Astron. Lett. 26, 679–690 (2000). https://doi.org/10.1134/1.1316114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1316114

Keywords

Navigation