Skip to main content
Log in

Molecular design of new magnetically active copper complexes with heteroaromatic schiff bases and azo compounds

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Copper chelates with tridentate ligands containing pyridine or pyrazole ring at the azomethine or azo fragment were synthesized by chemical electrochemical methods, and their structure was characterized by the EXAFS spectra. Thermal magnetochemical analysis of the complexes revealed antiferromagnetic exchange interaction in all complexes. The exchange interaction parameter of the complex containing an N-tosylamino group in the ortho position with respect to the azomethine group is much lesser than that of the corresponding complex having an oxygen atom in the same position. The copper chelate derived from azopyrazole ligand shows low-temperature ferromagnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minkin, V.I., Olekhnovich, L.P., and Zhdanov, Yu.A., Molekulyarnyi dizain tautomernykh sistem (Molecular Design of Tautomeric Systems), Rostov-on-Don: Rostov. Gos. Univ., 1977.

    Google Scholar 

  2. Minkin, V.I., Olekhnovich, L.P., and Zhdanov, Yu.A., Molecular Design of Tautomeric Compounds, Dordrecht: Kluwer Academic, 1988.

    Google Scholar 

  3. Minkin, V.I., Olekhnovich, L.P., and Zhdanov, Yu.A., Acc. Chem. Res., 1981, vol. 14, no. 7, p. 210.

    Article  CAS  Google Scholar 

  4. Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2002, vol. 71, no. 11, p. 1064.

    Google Scholar 

  5. Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2005, vol. 74, no. 3, p. 211.

    Google Scholar 

  6. Ovcharenko, V.I. and Sagdeev, R.Z., Usp. Khim., 1999, vol. 68, no. 5, p. 381.

    Google Scholar 

  7. Kahn, O., Molecular Magnetism, New York: Wiley, 1993.

    Google Scholar 

  8. Gatteschi, D., Sessoli, R., and Cornia, A., Comprehensive Coordination Chemistry II, McCleverty, J.A. and Meyer, T.J., Eds., Amsterdam: Elsevier, 2003, vol. 2, p. 393.

    Google Scholar 

  9. Single-Molecule Magnets and Related Phenomena, (Structure and Bonding series, vol. 122), Winpenny, R., Ed., Berlin: Springer, 2006.

    Google Scholar 

  10. Proc. 10th Int. Conf. on Molecule-Based Magnets (ICMM 2006), Polyhedron, 2007, vol. 26, nos. 9–11.

    Google Scholar 

  11. Uraev, A.I., Vasilchenko, I.S., Ikorskii, V.N., Shestakova, T.A., Burlov, A.S., Lyssenko, K.A., Vlasenko, V.G., Kuz’menko, T.A., Divaeva, L.N., Pirog, I.V., Borodkin, G.S., Uflyand, I.E., Antipin, M.Yu., Ovcharenko, V.I., Garnovskii, A.D., and Minkin, V.I., Mendeleev Commun., 2005, vol. 15, no. 4, p. 133.

    Article  Google Scholar 

  12. Garnovskii, A.D., Burlov, A.S., Lukov, V.V., Zaletov, V.G., Asmaev, O.T., Levchenkov, S.I., Amarskii, E.G., and Garnovskii, D.A., Koord. Khim., 1996, vol. 22, no. 11, p. 838.

    Google Scholar 

  13. Burlov, A.S., Koshchienko, Yu.V., Ikorskii, V.N., Vlasenko, V.G., Zarubin, I.A., Uraev, A.I., Vasil’chenko, I.S., Garnovskii, D.A., Borodkin, G.S., Nikolaevskii, S.A., and Garnovskii, A.D., Zh. Neorg. Khim., 2006, vol. 51, no. 7, p. 1143.

    Google Scholar 

  14. Burlov, A.S., Ikorskii, V.N., Uraev, A.I., Koshchienko, Yu.V., Vasil’chenko, I.S., Garnovskii, D.A., Borodkin, G.S., Nikolaevskii, S.A., and Garnovskii, A.D., Russ. J. Gen. Chem., 2006, vol. 76, no. 8, p. 1282.

    Article  Google Scholar 

  15. Garnovskii, A.D., Ikorskii, V.N., Uraev, A.I., Vasilchenko, I.S., Burlov, A.S., Garnovskii, D.A., Lyssenko, K.A., Vlasenko, V.G., Shestakova, T.E., Koshchienko, Yu.V., Kuz’menko, T.A., Divaeva, L.N., Bubnov, M.P., Rybalkin, V.P., Korshunov, O.Yu., Pirog, I.V., Borodkin, G.S., Bren, V.A., Uflyand, I.E., Antipin, M.Yu., and Minkin, V.I., J. Coord. Chem., 2007, vol. 60, no. 14, p. 1493.

    Article  CAS  Google Scholar 

  16. Garnovskii, A.D., Uraev, A.I., and Minkin, V.I., Arkivoc, 2004, part 3, p. 29.

  17. Shkol’nikova, L.M. and Porai-Koshits, M.A., Itogi Nauki Tekh., 1982, vol. 16, p. 117.

    CAS  Google Scholar 

  18. Skopenko, V.V., Amirkhanov, V.M., Sliva, T.Yu., Vasil’chenko, I.S., Anpilova, E.L., and Garnovskii, A.D., Usp. Khim., 2004, vol. 73, no. 8, p. 797.

    Google Scholar 

  19. Garnovskii, A.D., Alekseenko, V.A., Kogan, V.A., Bolotin, B.M., Osipov, O.A., Yusman, T.A., and Chernova, N.I., Koord. Khim., 1977, vol. 3, no. 4, p. 500.

    CAS  Google Scholar 

  20. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Willey, 1997, 5th ed., part B.

    Google Scholar 

  21. Tahir, M.N., Ülkü, D., Atakol, O., and Akay, A., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1996, vol. 52, no. 11, p. 2676.

    Article  Google Scholar 

  22. Mathur, R.P., Pradhan, M.V., and Mathur, P., Oriental J. Chem., 1993, vol. 9, no. 4, p. 320.

    Google Scholar 

  23. Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., Vedrinskii, R.V., Kraizman, V.L., Kulipanov, G.N., Mazalov, L.N., Skrinskii, A.N., Fedorov, V.K., Khel’mer, B.Yu., and Shuvaev, A.T., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-Ray Absorption Method of Studying the Structure of Amorphous Sciences: EXAFS Spectroscopy), Novosibirsk: Nauka, Sib. Otd., 1988.

    Google Scholar 

  24. Newville, M., J. Synchrotron Rad., 2001, vol. 8, part 2, p. 96.

    Article  CAS  Google Scholar 

  25. Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., and Eller, M.Y., Phys. Rev. B, 1995, vol. 52, no. 4, p. 2995.

    Article  Google Scholar 

  26. Allen, F.H., Acta Crystallogr., Sect. B, 2002, vol. 58, no. 3, p. 380.

    Article  Google Scholar 

  27. Hernandez-Molina, R. and Menderos, A., Comprehensive Coordination Chemistry II, McCleverty, J.A. and Meyer, T.J., Eds., Amsterdam: Elsevier, 2003, vol. 1, p. 411.

    Google Scholar 

  28. Emelius, L.C., Cupertino, D.C., Harris, S.G., Owens, S., Parsons, S., Swart, R.M., Tasker, P.A., and White, D.J., J. Chem. Soc., Dalton Trans, 2001, no. 8, p. 1239.

  29. Garnovskii, A.D., Vasil’chenko, I.S., and Garnovskii, D.A., Sovremennye aspekty sinteza metallokompleksov. Osnovnye ligandy i metody (Modern Aspects of the Synthesis of Metal Complexes. Ligands and Methods), Rostov-on-Don: LaPO, 2000.

    Google Scholar 

  30. Synthetic Coordination and Organometallic Chemistry, Garnovskii, A.D. and Kharisov, B.I., Eds., New York: Marcel Dekker, 2003.

    Google Scholar 

  31. Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, no. 8, p. 1680.

    CAS  Google Scholar 

  32. Garnovskii, D.A., Antsyshkina, A.S., Sadikov, G.G., Sousa, A., Burlov, A.S., Vasil’chenko, I.S., and Garnovskii, A.D., Zh. Neorg. Khim., 1998, vol. 43, no. 11, p. 1852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Garnovskii.

Additional information

Original Russian Text © A.S. Burlov, A.I. Uraev, V.N. Ikorskii, S.A. Nikolaevskii, Yu.V. Koshchienko, I.S. Vasil’chenko, D.A. Garnovskii, V.G. Vlasenko, Ya.V. Zubavichus, L.N. Divaeva, G.S. Borodkin, A.D. Garnovskii, 2008, published in Zhurnal Obshchei Khimii, 2008, Vol. 78, No. 6, pp. 1002–1007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burlov, A.S., Uraev, A.I., Ikorskii, V.N. et al. Molecular design of new magnetically active copper complexes with heteroaromatic schiff bases and azo compounds. Russ J Gen Chem 78, 1230–1235 (2008). https://doi.org/10.1134/S1070363208060224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363208060224

Keywords

Navigation