Skip to main content
Log in

Spectroscopic states of PTCDA negative ions and their relation to the maxima of unoccupied state density in the conduction band

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Electron attachment spectroscopy is employed to demonstrate that the scattering of slow (0–15 eV) electrons from perylenetetracarboxilic dianhydride (PTCDA) molecules in the gas phase leads to the resonant formation of molecular and fragment negative ions detected in the mass-spectrometric experiment. Depending on the electron energy, currents of anions have clearly manifested peaks at 0.14, 1.9, 3.0, 4.8, and 5.7 eV. In addition, resonant states are also detected at thermal energy (0 eV) of scattered electrons, as well as at 0.4 and 1.0 eV, as shoulders on experimental curves. The spectroscopic states of PTCDA anions at energies exceeding 0 eV are interpreted in terms of the formation of shape resonances on the basis of calculated values of energies of π*-type unoccupied molecular orbitals. It is found that the positions of unoccupied orbitals of an isolated PTCDA molecule correspond to the peaks in the density of states of the conduction band of PTCDA films provided that the energies of the orbitals are shifted by 1.4 eV. The latter value can be interpreted as the binding energy of a molecule in the film due to the polarization interaction with the surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Forrest, Chem. Rev. 97, 1793 (1997).

    Article  Google Scholar 

  2. F. S. Tautz, Prog. Surf. Sci. 82, 479 (2007).

    Article  ADS  Google Scholar 

  3. S. Günes, H. Neugebauer, and N. S. Saricigtci, Chem. Rev. 107, 1324 (2007).

    Article  Google Scholar 

  4. Q. H. Wang and M. C. Hersam, Nature Chem. 1, 206 (2009).

    Article  ADS  Google Scholar 

  5. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  6. A. O. Morozov, T. U. Kampen, and D. R. T. Zahn, Surf. Sci. 446, 193 (2000).

    Article  ADS  Google Scholar 

  7. A. S. Komolov, P. J. Møller, Y. G. Aliaev, S. Akhremtchik, and K. Schaumburg, J. Mol. Struct. 744–747, 145 (2005).

    Article  Google Scholar 

  8. A. S. Komolov, P. J. Møller, J. Mortensen, et al., Appl. Surf. Sci. 253, 7376 (2007).

    Article  ADS  Google Scholar 

  9. A. S. Komolov, P. J. Møller, and E. F. Lazneva, J. Electron Spectrosc. Relat. Phenom. 131–132, 67 (2003).

    Article  Google Scholar 

  10. M. Allan, J. Electron Spectrosc. Relat. Phenom. 48, 219 (1989).

    Article  Google Scholar 

  11. V. I. Khvostenko, Mass Spectrometry of Negative Ions in Organic Chemistry (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  12. E. Illenberger and B. M. Smirnov, Usp. Fiz. Nauk. 168, 731 (1998) [Phys. Usp. 41, 651 (1998)].

    Article  Google Scholar 

  13. G. J. Schultz, Rev. Mod. Phys. 45/3, 423 (1973).

    Article  ADS  Google Scholar 

  14. L. G. Christophorou, Electron-Molecule Interactions and Their Applications (Academic, Orlando, 1984).

    Google Scholar 

  15. R. E. Palmer and P. J. Rous, Rev. Mod. Phys. 64/2, 383 (1992).

    Article  ADS  Google Scholar 

  16. S. A. Pshenichnyuk, N. L. Asfandiarov, and A. V. Kukhto, Khim. Fiz. 26(7), 5 (2007).

    Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision D.01 (Gaussian Inc., Wallingford, 2004).

    Google Scholar 

  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  19. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).

    Article  ADS  Google Scholar 

  20. L. Sanche and G. J. Shulz, Phys. Rev. A 5, 1672 (1972).

    Article  ADS  Google Scholar 

  21. K. D. Jordan and P. D. Burrow, Chem. Rev. 87, 557 (1987).

    Article  Google Scholar 

  22. A. Modelli, Trends Chem. Phys. 6, 57 (1997).

    Google Scholar 

  23. D. Chen and G. A. Gallup, J. Chem. Phys. 93, 8893 (1990).

    Article  ADS  Google Scholar 

  24. J. Simons and K. D. Jordan, Chem. Rev. 87, 535 (1987).

    Article  Google Scholar 

  25. S. W. Staley and J. T. Strnad, J. Phys. Chem. 98, 116 (1994).

    Article  Google Scholar 

  26. S. A. Pshenichnyuk, N. L. Asfandiarov, and P. D. Barrou, Izv. Ross. Akad. Nauk, Ser. Khim., No. 6, 1222 (2007).

  27. A. M. Scheer and P. D. Burrow, J. Phys. Chem. B 110, 17751 (2006).

    Article  Google Scholar 

  28. V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thomson, Chem. Phys. 210, 1 (1996).

    Article  Google Scholar 

  29. C. I. Wu, Y. Hirose, H. Sirringhaus, and A. Kahn, Chem. Phys. Lett. 272, 43 (1997).

    Article  ADS  Google Scholar 

  30. S. Park, T. U. Kampen, D. R. T. Zahn, et al., Appl. Phys. Lett. 79/25, 4124 (2001).

    Article  ADS  Google Scholar 

  31. S. R. Forest, M. L. Kaplan, and P. H. Schmidt, J. Appl. Phys. 55, 1492 (1984).

    Article  ADS  Google Scholar 

  32. J. Taborski, P. Väterlein, H. Dietz, et al., J. Electron Spectrosc. Relat. Phenom. 75, 129 (1995).

    Article  Google Scholar 

  33. S. A. Komolov, N. B. Gerasimova, A. G. Sidorenko, et al., Pis’ma Zh Tekh. Fiz. 25(20), 19 (1999) [Tech. Phys. Lett. 25, 809 (1999)].

    Google Scholar 

  34. E. V. Tsiper, Z. G. Soos, W. Gao, and A. Kahn, Chem. Phys. Lett. 360, 47 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pshenichnyuk.

Additional information

Original Russian Text © S.A. Pshenichnyuk, A.V. Kukhto, I.N. Kukhto, A.S. Komolov, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 6, pp. 8–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pshenichnyuk, S.A., Kukhto, A.V., Kukhto, I.N. et al. Spectroscopic states of PTCDA negative ions and their relation to the maxima of unoccupied state density in the conduction band. Tech. Phys. 56, 754–759 (2011). https://doi.org/10.1134/S106378421106020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421106020X

Keywords

Navigation