Skip to main content
Log in

Charge transport at the interface of n-GaAs (100) with an aqueous HCl solution: Electrochemical impedance spectroscopy study

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Charge transport processes at the interface of n-GaAs (100) with an aqueous HCl solution are studied by electrochemical impedance spectroscopy. It is found that when open-circuit potential and anodic potentials are applied to the semiconductor the impedance spectra contain two capacitive semicircles corresponding to the capacitances of the space charge layer and surface states. In the case of open-circuit potential, semiconductor band bending at the interface with the solution is about 0.7 eV and the density of occupied surface states in the dark and under daylight conditions is 1.6 and 2.8 × 1012 cm2 eV−1, respectively. When cathode potentials are applied to GaAs, hydrogen evolution begins at the semiconductor/electrolyte interface and an additional inductive loop appears in the impedance spectra. At the same time, the density of occupied surface states increases considerably both due to a straightening of the semiconductor bands and to the appearance of As-H bonds. Thus, charge transport through the n-GaAs (100)/aqueous HCl solution interface is always mediated by semiconductor surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Suzuki, M Ogawa, Appl. Phys. Lett. 31, 473 (1977).

    Article  ADS  Google Scholar 

  2. R. P. Vasquez, B. F. Lewis, and F. J. Grunthaner, J. Vac. Sci. Technol. B 1, 791 (1983).

    Article  Google Scholar 

  3. O. E. Tereshchenko, S. I. Chikichev, and A. S. Terekhov, J. Vac. Sci. Technol. A 17, 2655 (1999).

    Article  ADS  Google Scholar 

  4. B. H. Ern, M. Stchakovsky, F. Ozanam, and J.-N. Chazalviel, J. Electrochem. Soc. 145, 447 (1998).

    Article  Google Scholar 

  5. R. Memming, Semiconductor Electrochemistry (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  6. T. A. Abshere and J. L. Richmond, J. Phys. Chem. B 104, 1602 (2000).

    Article  Google Scholar 

  7. Y. Ishikawa, T. Fujui, and H. Hasegawa, J. Vac. Sci. Technol. B 15, 1163 (1997).

    Article  Google Scholar 

  8. I. Yagi, S. Idojiri, T. Aatani, and K. Uosaki, J. Phys. Chem. B 109, 5021 (2005).

    Article  Google Scholar 

  9. Y. Huang, J. Luo, and D. G. Ivey, Thin Solid Films 496, 724 (2006).

    Article  ADS  Google Scholar 

  10. Z. Hens and W. P. Gomes, J. Phys. Chem. B 104, 7725 (2000).

    Article  Google Scholar 

  11. G. Horowitz, P. Allongue, and H. Cachet, J. Electrochem. Soc. 131, 2563 (1984).

    Article  Google Scholar 

  12. V. Lazarescu, M. F. Lazarescu, E. Santos, and W. Schmickler, Electrochim. Acta 49, 4231 (2004).

    Article  Google Scholar 

  13. C. Debiemme-Chuovy and H. Cachet, J. Phys. Chem. C 112, 18183 (2008).

    Article  Google Scholar 

  14. P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, J. Appl. Phys. 103, 034106 (2008).

    Article  ADS  Google Scholar 

  15. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, J. Phys. Chem. C 112, 18510 (2008).

    Google Scholar 

  16. M. V. Lebedev, E. Mankel, T. Mayer, and W. Jaegermann, Phys. Status Solidi C 7, 193 (2010).

    Article  ADS  Google Scholar 

  17. K. W. Frese and S. R. Morrison, J. Electrochem. Soc. 126, 1235 (1979).

    Article  Google Scholar 

  18. S. D. Offsey, J. M. Woodall, A. C. Warren, P. D. Kirchner, T. I. Chappell, and G. D. Pettit, Appl. Phys. Lett. 48, 475 (1986).

    Article  ADS  Google Scholar 

  19. J.-F. Fan, Y. Kurata, and Y. Nannichi, Jpn. J. Appl. Phys. 28, L2255 (1989).

    Article  ADS  Google Scholar 

  20. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765 (1999).

    Article  ADS  Google Scholar 

  21. X. Li and P. W. Bohn, J. Electrochem. Soc. 147, 1740 (2000).

    Article  Google Scholar 

  22. C. M. Finnie, X. Li, and P. W. Bohn, J. Appl. Phys. 86, 4997 (1999).

    Article  ADS  Google Scholar 

  23. D. Liu, T. Zhang, R. A. LaRue, J. S. Harris, and T. W. Sigmon, Appl. Phys. Lett. 53, 1059 (1988).

    Article  ADS  Google Scholar 

  24. T. Mayer, M. Lebedev, R. Hunger, and W. Jaegermann, Appl. Surf. Sci. 252, 31 (2005).

    Article  ADS  Google Scholar 

  25. B. H. Erné, F. Ozanam, and J.-N. Chazalviel, J. Phys. Chem. B 103, 2948 (1999).

    Article  Google Scholar 

  26. B. H. Erné, and D. Vanmaekelbergh, J. Electrochem. Soc. 144, 3385 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Additional information

Original Russian Text © M.V. Lebedev, T. Masuda, K. Uosaki, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 4, pp. 487–493.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, M.V., Masuda, T. & Uosaki, K. Charge transport at the interface of n-GaAs (100) with an aqueous HCl solution: Electrochemical impedance spectroscopy study. Semiconductors 46, 471–477 (2012). https://doi.org/10.1134/S1063782612040136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612040136

Keywords

Navigation