Skip to main content
Log in

An algebraic PT-symmetric quantum theory with a maximal mass

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this paper, we draw attention to the fact that the studies by V.G. Kadyshevsky devoted to the creation of the geometric quantum field theory with a fundamental mass have had great development recently, as regards a non-Hermitian algebraic approach to construction of the quantum theory. The central idea of such theories is to construct a new scalar product in which the average values of non-Hermitian Hamiltonians are real. Many studies in this field include both purely mathematical ones and those containing the discussion of experimental results. We consider the development of an algebraic relativistic pseudo-Hermitian quantum theory with a maximal mass and discuss its experimentally important corollaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kadyshevsky, “Quantum field theory and Markov’s maximon”, The III International Seminar “Quantum Theory of Gravitation”, Moscow, October 23–25, 1984; JINR Preprint R2-84-753 (1984).

    Google Scholar 

  2. V. G. Kadyshevsky, “Fundamental length hypothesis and new concept of gauge vector field,” Nucl. Phys. B 141, 477 (1978); Fermilab-Pub. 78/22-THY, 1978; Toward a More Profound Theory of Electromagnetic Interactions: Fermilab-Pub. 78/70-THY, 1978

    Article  ADS  MathSciNet  Google Scholar 

  3. V. G. Kadyshevsky, “A new approach to the theory of electromagnetic interactions,” Fiz. Elem. Chastits At. Yadra 11 5 (1980).

    MathSciNet  Google Scholar 

  4. V. N. Rodionov, “Non-Hermitian PT-symmetric Dirac-Pauli Hamiltonians with real energy eigenvalues in the magnetic field,” Int. J. Theor. Phys, Vol. 54, Issue 11, pp. 3907–3919, (2015). First online: 29 November 2014, doi 10.1007/s10773-014-2410-4

  5. V. N. Rodionov, “Exact solutions for non-Hermitian Dirac-Pauli equation in an intensive magnetic field,” Physica Scr. 90, 045302 (2015).

    Article  ADS  Google Scholar 

  6. M. A. Markov, “Can the gravitational field prove essential for the theory of elementary particles?,” Prog. Theor Phys. Suppl. Commemoration Issue for the Thirtieth Anniversary of Meson Theory and Yukawa Dr. H., 85 (1965)

  7. M. A. Markov, “Elementary particles with maximally large masses (quarks, maximons),” Zh. Eksp. Teor. Fiz. 51, 878 (1966).

    Google Scholar 

  8. M. A. Markov, “Maximon-type scenario of the Universe (Big Bang, Small Bang, Micro Bang),” Preprint INR P-0207 (1981)

    Google Scholar 

  9. M. A. Markov, “On the maximon and the concept of elementary particle”, Preprint No. INR P-0208 (1981)

    Google Scholar 

  10. M. A. Markov, “On “maximon” an “minimon” in view of possible formulation of an “elementary particle”,” Pis’ma Zh. Eksp. Teor. Fiz. 45, 115 (1987).

    ADS  Google Scholar 

  11. M. A. Markov and V. F. Mukhanov, “On the problems of a very early Universe,” Phys. Lett. A 104 (4), 200 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. G. Kadyshevsky and M. D. Mateev, “Local gauge invariant QED with fundamental length,” Phys. Lett. B 106, 139 (1981).

    Article  ADS  Google Scholar 

  13. V. G. Kadyshevsky and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. I: The scalar model,” Nuovo Cimento. A 87, 324 (1985).

    Article  ADS  Google Scholar 

  14. M. V. Chizhov, A. D. Donkov, R. M. Ibadov, V. G. Kadyshevsky, and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. II: Gauge vector fields,” Nuovo Cimento, A 87, 350 (1985).

    Article  ADS  Google Scholar 

  15. M. V. Chizhov, A. D. Donkov, R. M. Ibadov, V. G. Kadyshevsky, and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. III: Dirac fields,” Nuovo Cimento, A 87, 373 (1985).

    Article  ADS  Google Scholar 

  16. V. G. Kadyshevsky, “On the finite character of the mass spectrum of elementary particles,” Fiz. Elem. Chastits At. Yadra 29, 563 (1998).

    Google Scholar 

  17. V. G. Kadyshevsky and D. V. Fursaev, “Left–right components of bosonic field and electroweak theory,” JINR Rapid Commun, No. 6, 5 (1992).

    Google Scholar 

  18. R. M. Ibadov and V. G. Kadyshevsky, “On supersymmetry transformations in the field theory with a fundamental mass,” JINR Preprint R2-86-835 (Dubna, 1986).

    Google Scholar 

  19. V. G. Kadyshevsky and D. V. Fursaev, “On chiral fermion fields at high energies,” JINR Preprint (Dubna, 1987); Sov. Phys. Dokl. 34, 534 (1989).

    MathSciNet  Google Scholar 

  20. V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, “Towards a maximal mass model,” CERN TH/2007–150, (2005). arXiv:hep-ph/0708.4205.

    Google Scholar 

  21. V. G. Kadyshevsky and V. N. Rodionov, “Polarization of electron-positron vacuum by strong magnetic fields in the theory with a fundamental mass,” Phys. Part. Nucl. A. 36 (7), 74 (2005).

    Google Scholar 

  22. V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, “Towards a geometric approach to the formulation of the Standard Model,” Dokl. Phys, 51, 287 (2006); arXiv:hep-ph/0512332.

    Article  ADS  Google Scholar 

  23. T. D. Newton and E. P. Wigner, “Localized states for elementary systems,” Rev. Mod. Phys. 21, 400 (1949).

    Article  ADS  MATH  Google Scholar 

  24. W. Heisenberg, “Zur Teorie Der Schauer Der Höhenstrahlung,” Z. Phys. 101, 533 (1936).

    Article  ADS  MATH  Google Scholar 

  25. M. A. Markov, Hyperons and K-Mesons (GIMFL, Moscow, 1958) [in Russian].

    Google Scholar 

  26. Yu. A. Gol’fand, “On introduction of an elementary length into the relativistic theory of elementary particles,” Zh. Eksp. Teor. Fiz. 37, 504 (1959).

    MathSciNet  Google Scholar 

  27. V. G. Kadyshevsky, “Toward the theory of space–time,” Zh. Eksp. Teor. Fiz. 41, 1885 (1961).

    Google Scholar 

  28. V. G. Kadyshevsky, “Toward the theory of discrete space–time,” DAN SSSR, 136 (1), 70 (1961).

    Google Scholar 

  29. D. A. Kirzhnits, “Nonlocal quantum field theory,” Usp. Fiz. Nauk 9, 129 (1966).

    Google Scholar 

  30. D. I. Blokhintsev, Space and Time in the Microworld (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  31. I. E. Tamm, “Collection of Scientific Papers,” Vol. 2 (Nauka, Moscow, 1975) [in Russian].

  32. G. V. Efimov, Nonlocal Interactions of Quantum Fields (Nauka, Moscow, 1977) [in Russian].

  33. K. Osterwalder and R. Schrader, “Feynman-Kac formula for Euclidean Fermi and boson fields,” Phys. Rev. Lett. 29, 1423 (1973)

    Article  ADS  Google Scholar 

  34. “Euclidean Fermi fields and a Feynman-Kac formula for boson–fermion models,” Helv. Phys. Acta 46, 277 (1973)

  35. “Axioms for Euclidean Green’s functions. I,” Comm. Math. Phys. 31, 83 (1973)

  36. “Axioms for Euclidean Green’s functions. II,” Comm. Math. Phys. 42, 281 (1975).

  37. V. P. Neznamov, “The Dirac equation in the model with a maximal mass,” arXiv:1010.4042.

  38. C. M. Bender and S. Boettcher, “Real spectra in nonHermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. C. M. Bender, S. Boettcher, and P. N. Meisinger, “PTsymmetric quantum mechanics,” J. Math. Phys. 40, 2210 (1999).

    ADS  MathSciNet  Google Scholar 

  40. A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics,” arXiv:0810.5643; Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Znojil, “Non-Hermitian Heisenberg representation,” arXiv:1505.01036.

  42. C. M. Bender, A. Fring, and J. Komijani, “Nonlinear eigenvalue problems,” arXiv:1401.6161.

  43. A. Mostafazadeh, “Adiabatic approximation, semiclassical scattering, and unidirectional invisibility,” arXiv:1401.4315.

  44. A. Mostafazadeh, “Physics of spectral singularities,” arXiv:1412.0454.

  45. A. Mostafazadeh, “Active invisibility cloaks in one dimension,” arXiv:1504.01756.

  46. A. Beygi, S. P. Klevansky, and C. M. Bender, “Coupled oscillator systems having partial PT symmetry,” arXiv: 1503.05725; Phys. Rev. A 91, 062101 (2015).

    Article  ADS  Google Scholar 

  47. M. G. Makris and P. Lambropoulos, “Quantum Zeno effect by indirect measurement: The effect of the detector,” arXiv:quant-ph/0406191; Phys. Rev. A 70, 044101 (2004).

    Article  ADS  Google Scholar 

  48. P. Lambropoulos, L. A. A. Nikolopoulos, and M. G. Makris, “Signatures of direct double ionization under XUV radiation,” arXiv:physics/0503195.

  49. M. Zanolin, S. Vitale, and N. Makris, “Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: The single interferometer case,” arXiv:0912.0065; Phys. Rev. D 81, 124048 (2010).

    Article  ADS  Google Scholar 

  50. P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT-symmetry in bounded and unbounded scattering systems,” arXiv:1307.0149; Phys. Rev. X 3, 041030 (2013).

    Google Scholar 

  51. S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K.G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “Scalable numerical approach for the steady-state ab initio laser theory,” arXiv:1312.2488; Phys. Rev. A 90, 023816 (2014).

    Article  ADS  Google Scholar 

  52. A. Mostafazadeh, “A dynamical formulation of onedimensional scattering theory and its applications in optics,” arXiv:1310.0592; Ann. Phys. (NY) 341, 77 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  53. K. G. Makris, L. Ge, and H. E. Tureci, “Anomalous transient amplification of waves in non-normal photonic media,” arXiv:1410.4626.

  54. K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, and S. Rotter, “Constant-intensity waves and their modulation instability in non-Hermitian potentials,” arXiv:1503.08986.

  55. M. Znojil, “Fundamental length in quantum theories with PT-symmetric Hamiltonians,” arXiv:0907.2677; Phys. Rev. D 80, 045022 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Znojil, “Fundamental length in quantum theories with PT-symmetric Hamiltonians II: The case of quantum graphs,” arXiv:0910.2560; Phys. Rev. D 80, 105004 (2009).

    Article  ADS  Google Scholar 

  57. A. Khare and B. P. Mandal, “A PT-invariant potential with complex QES eigenvalues,” Phys. Lett. A 272, 53 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. M. Znojil and G. Levai, “Spontaneous breakdown of PT-symmetry in the solvable square-well model,” Mod. Phys. Lett. A 16, 2273 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Mostafazadeh, “PT-symmetric cubic anharmonic oscillator as a physical model,” J. Phys. A 38, 6657 (2005)

    MathSciNet  MATH  Google Scholar 

  60. J. Phys. A Erratum, 38 8158 (2005).

  61. C. M. Bender, D. C. Brody, J. Chen, H. F. Jones, K. A. Milton, M. C. Ogilvie, “Equivalence of a complex -symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly,” Phys. Rev. D: Part. Fields 74, 025016 (2006).

    Article  ADS  Google Scholar 

  62. C. M. Bender, K. Besseghir, H. F. Jones, and X. Yin, “Small-e behavior of the non-Hermitian -symmetric Hamiltonian H = p2 + x2(ix)e,” arXiv:0906.1291.

  63. A. Khare and B. P. Mandal, “New quasi-exactly solvable Hermitian as well as non-Hermitian PT-invariant potentials,” Spl. Issue Pramana J. Phys 73, 387 (2009).

    Article  ADS  Google Scholar 

  64. P. Dorey, C. Dunning, and R. Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics,” J. Phys A: Math. Theor 34, 5679 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D: Part. Fields 70, 025001 (2004)

    Article  ADS  Google Scholar 

  66. Phys. Rev. D. Erratum, 71 049901 (2005).

  67. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” arXiv:hepth/0703096.

  68. C. M. Bender, H. F. Jones, and R. J. Rivers, “Dual PTsymmetric quantum field theories,” Phys. Lett. B 625, 333 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  70. Phys. Rev. Lett. Erratum, 92, 119902 (2004)

  71. C. M. Bender, J. Brod, A. Refig, and M. Reuter, “The C operator in PT-symmetric quantum theories,” arXiv:quant-ph/0402026.

  72. A. Mostafazadeh, “Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,” J. Math. Phys. 43, 205 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. “Pseudo-Hermiticity versus PTsymmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum,” J. Math. Phys. 43, 2814 (2002)

  74. “Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-hermiticity and the presence of antilinear symmetries,” J. Math. Phys. 43, 3944 (2002).

  75. A. Mostafazadeh and A. Batal, “Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics,” J. Phys A: Math. Theor 37, 11645 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. A. Mostafazadeh, “Exact PT-symmetry is equivalent to hermiticity,” J. Phys A: Math. Theor 36, 7081 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. A. Mostafazadeh, “Hilbert space structures on the solution space of Klein-Gordon type evolution equations,” Class. Q. Grav 20, 155 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. A. Mostafazadeh, “Quantum mechanics of Klein-Gordon-type fields and quantum cosmology,” Ann. Phys. (New York) 309, 1 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. A. Mostafazadeh and F. Zamani, “Quantum mechanics of Klein-Gordon fields I: Hilbert space, localized states, and chiral symmetry,” Ann. Phys. 321, 2183 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. “Quantum mechanics of Klein-Gordon fields II: relativistic coherent States,” Ann. Phys. 321, 2210 (2006).

  81. A. Mostafazadeh, “A physical realization of the generalized PT-, C-, and CPT-symmetries and the position operator for Klein-Gordon fields,” Int. J. Mod. Phys. A 21 (12), 2553 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. F. Zamani and A. Mostafazadeh, “Quantum mechanics of Proca fields,” J. Math. Phys. 50, 052302 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. V. N. Rodionov, “PT-symmetric pseudo-Hermitian relativistic quantum mechanics with maximal mass,” arXiv:hep-th/1207.5463.

  84. V. N. Rodionov, “Non-Hermitian -symmetric quantum mechanics of relativistic particles with the restriction of mass,” arXiv:1303.7053.

  85. V. N. Rodionov, “On limitation of mass spectrum in non-Hermitian -symmetric models with the ?5-dependent mass term,” arXiv:1309.0231.

  86. V. N. Rodionov, “Non-Hermitian -symmetric relativistic quantum mechanics with a maximal mass in an external magnetic field,” arXiv:1404.0503.

  87. V. N. Rodionov, “Exact solutions for non-Hermitian Dirac-Pauli equation in an intensive magnetic field,” arXiv:1406.0383.

  88. V. N. Rodionov, “Non-Hermitian, -Symmetric Dirac-Pauli Hamiltonians with real energy eigenvalues in the magnetic field,” arXiv:1409.5412.

  89. V. N. Rodionov and G. A. Kravtsova, “Algebraic and geometric approaches to non-Hermitian PT-symmetric relativistic quantum mechanics with a maximal mass,” Vestn. Mosk Univ., Ser. 3: Fiz. Astron. 69 (3), 223 (2014).

    MathSciNet  Google Scholar 

  90. V. N. Rodionov and G. A. Kravtsova, “On development of non-Hermitian algebraic theory with ?5 mass extension,” Theor. Math. Phys. 182, 100 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  91. I. P. Volobuev, V. G. Kadyshevsky, M. D. Mateev, and M. R. Mir-Kasimov, “Equations of motion for scalar and spinor fields in four-dimensional non-Euclidean momentum space,” Teor. Mat. Fiz. 40, 363 (1979).

    Article  MathSciNet  Google Scholar 

  92. I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, Interaction of charged particles with a strong electromagnetic field (Izd. Mosk. Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  93. A. Bermudez, M. A. Martin-Delgado, and E. Solano, “Mesoscopic superposition states in relativistic Landau levels,” Phys. Rev. Lett. 99, 123602 (2007).

    Article  ADS  Google Scholar 

  94. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  95. J. Schwinger, “On the Green’s functions of quantized fields. I, II,” Proc. Natl. Acad. Sci. U.S.A. 37, 452, 455 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  96. I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, “Synchrotron radiation of electron with vacuum magnetic moment,” Vestn. Mosk Univ., Ser. 3: Fiz. Astron. 7 (1), 30 (1966).

    Google Scholar 

  97. B. Lee and R. Shrock, “Natural suppression of symmetry violation in gauge theories: Muon and electron-lepton number nonconservation,” Phys. Rev. D: Part. Fields 16, 1444 (1977).

    Article  ADS  Google Scholar 

  98. K. Fujikawa and R. Shrock, “Magnetic moment of a massive neutrino and neutrino-spin rotation,” Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  99. R. A. Battye, “Evidence for massive neutrinos CMB and lensing observations,” arXiv:1308.5870v2.

  100. N. V. Mikheev, D. A. Rumyantsev, and M. V. Chistyakov, “Neutrino photoproduction on electron in dense magnetized medium,” JETP 119, 251 (2014).

    Article  Google Scholar 

  101. M. V. Chistyakov, A. V. Kuznetsov, N. V. Mikheev, D. A. Rumyantsev, and D. M. Shlenev, “Neutrino photoproduction on electron in dense magnetized medium,” arXiv:1410.5566v1.

  102. K. A. Tomilin, Fundamental Physical Constants 236–237 (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Rodionov.

Additional information

Original Russian Text © V.N. Rodionov, G.A. Kravtsova, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 2.

In blessed memory of Vladimir Georgievich Kadyshevsky

“The stone which the builders rejected has become the head of the corner” (Psalm 117:22-23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, V.N., Kravtsova, G.A. An algebraic PT-symmetric quantum theory with a maximal mass. Phys. Part. Nuclei 47, 135–156 (2016). https://doi.org/10.1134/S1063779616020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616020052

Keywords

Navigation