Skip to main content
Log in

Experimental research into thermomechanical effects at linear and nonlinear deformation stages in rock salt specimens under cyclic loading

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors discuss capabilities of taking information on mechanical processes in geomaterials under post-limiting elastic deformation based on variation in IR radiation intensity. Experimental results on recording of heat emission from specimens of rock salt exposed to cyclic loading by uniaxial compression are reported. It is concluded that thermomechanical effects are useful in recording of onset of failure activation in geomaterials under cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman, R., Introduction to Rock Mechanics, 2nd Edition, Wiley, 1989.

    Google Scholar 

  2. Voznesensky, E.A., Dinamicheskaya neustoichivost’ gruntov (Dynamic Instability of Soil), Moscow: Editorial URSS, 1999.

    Google Scholar 

  3. Bogdanov, Yu.M., Zhuravleva, T.Yu., Sil’verstov, L.K., and Tavostin, M.N., Investigation of Geomechanical Processes during Gas Injection and Extraction in Underground Gas Storage in Rock Salt, Gaz. Promysh., 2010, no. 6, pp. 72–75.

    Google Scholar 

  4. Mokhnachev, M.P., Ustalost’ gornykh porod (Fatigue of Rocks), Moscow: Nauka, 1979.

    Google Scholar 

  5. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.

    Google Scholar 

  6. Boldyrev, G.G., Metody opredeleniya mekhanicheskikh svoistv gruntov. Sostoyanie voprosa (Methods to Determine Mechanical Properties of Soil. State-of the-Art), Penza: PGUAS, 2008.

    Google Scholar 

  7. Badge, M.N. and Petros, V., Fatigue and Dynamic Energy Behavior of Rock Subjected to Cyclical Loading, Int. J. Rock Mech. & Min. Sci., 2009, vol. 46, pp. 200–209.

    Article  Google Scholar 

  8. Fuenkajorn, K. and Phueakphum, D., Effects of Cyclic Loading on Mechanical Properties of Maha Sarakham Salt, Engineering Geology, 2010, vol. 112, no. 1, pp. 43–52.

    Article  Google Scholar 

  9. Guo, Y.T., Zhao, K.L., Sun, G.H., Yang, C.H., Hong-Ling, M.A., and Zhang, G.M., Experimental Study of Fatigue Deformation and Damage Characteristics of Salt Rock under Cyclic Loading, Rock and Soil Mechanics, 2011, vol. 32, no. 5, pp. 1353–1359.

    Google Scholar 

  10. Liu, J., Xie, H., Hou, Z., et al., Damage Evolution of Rock Salt under Cyclic Loading in Uniaxial Tests, Acta Geotechnica, 2014, vol. 9, no. 1, pp. 153–160.

    Article  Google Scholar 

  11. Momeni, A., Karakus, M., Khanlari, G.R., and Heidari, M., Effects of Cyclic Loading on the Mechanical Properties of a Granite, Int. J. Rock Mech. & Min. Sci., 2015, vol. 77, pp. 89–96.

    Google Scholar 

  12. Zhigalkin, V.M., Usol’tseva, O.M., Semenov, V.N., Tsoi, P.A., Asanov, V.A., Baryakh, A.A., Pan’kov, I.L., and Toksarov, V.N., Deformation of Quasi-Plastic Salt Rocks under Different Conditions of Loading. Report I: Deformation of Salt Rocks under Uniaxial Compression, J. Min. Sci., 2005, vol. 41, no. 6, pp. 507–515.

    Article  Google Scholar 

  13. Wittke, W., Rock Mechanics, Springer-Verlag Berlin Heidelberg, 1990.

    Book  Google Scholar 

  14. Zakharov, V.N., Kubrin, S.S., Feit, G.N., and Blokhin, D.I., Determination of Rock Mass Stresses in Coal Mining under Conditions of Geo- and Gas-Dynamic Hazard, Ugol’, 2012, no. 10, pp. 34–36.

    Google Scholar 

  15. Kurlenya, M.V. and Oparin, V.N., Skvazhinnye geofizicheskie metody diagnostiki i kontrolya napryazhenno-deformirovannogo sostoyania massivov gornykh porod (Downhole Geophysical Methods to Estimate and Control Stress–Strain State of Rock Masses), Novosibirsk: Nauka, 1999.

    Google Scholar 

  16. Lavrov, A., Fracture-Induced Phenomena and Memory Effects in Rocks: A Review, Strain, 2005, vol. 41, no. 4, pp. 135–149.

    Article  Google Scholar 

  17. Lavrov, A.V. and Shkuratnik, V.L., Acoustic Emission during Deformation and Failure of Rocks (Survey), Akust. Zh., 2005, vol. 51, no. 7, pp. 6–18.

    Google Scholar 

  18. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritel’nye probory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Measurement Equipment for Simulation and Full-Scale Studies into Nonlinear Deformation and Wave Processes in Block Rock Masses), Novosibirsk: SO RAN, 2007.

    Google Scholar 

  19. Sheinin, V.I., Levin, B.V., Motovilov, V.A., Morozov, A.A., and Favorov, A.V., Determination of Periodic Changes in the Stress State of Grounds from Variation in Infrared Radiation Flux, J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 6, pp. 1131–1135.

    Article  Google Scholar 

  20. Sheinin, V.I., Levin, B.V., Motovilov, V.A., Morozov, A.A., and Favorov, A.V., Diagnostics of Fast Period Changes in Stresses in Rocks by Infrared Radiometry Data, Fiz. Zemli, 2001, no. 4, pp. 24–30.

    Google Scholar 

  21. Sheinin, V.I., Sidorchuk, V.F., and Blokhin, D.I., Experimental Infrared Radometry Measurement of Normal Tangential Stresses on Bottom Hole in Model Soil Mass, Osn., Fund., Mekh. Grunt., 2004, no. 6, pp. 8–11.

    Google Scholar 

  22. Wu, L., Liu, S., Wu, Y., and Wang, C., Precursors for Fracturing and Failure, Part II: IRR T-Curve Abnormalities, Int. J. Rock Mech. & Min. Sci., 2006, vol. 43, no. 3, pp. 483–493.

    Article  Google Scholar 

  23. Sheinin, V.I. and Blokhin, D.I., Features of Thermomechanical Effects in Rock Salt Samples under Uniaxial Compression, J. Min. Sci. 2012, vol. 38, no. 1, pp. 39–45.

    Article  Google Scholar 

  24. Oparin, V.N., Kiryaeva, t.A., Gavrilov, V.Yu., et al., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.

    Article  Google Scholar 

  25. Nadai, A., Plasticity, McGraw Hill, 1930.

    Google Scholar 

  26. Kriksunov, L.Z., Spravochnik po osnovam infrakrasnoi tekhniki (Reference Book on Basics of Infrared Mechanics), Moscow: Sov. Radio, 1978.

    Google Scholar 

  27. Il’in, A.S., Thermoelectic Receivers of Optic Radiation of Film and Wire Thermocouples for Precision Measurements, Metrologiya, 2005, no. 11, pp. 19–30.

    Google Scholar 

  28. Moskvitin, V.V., Plastichnost’ pri peremennykh nagruzheniyakh (Plasticity under Varied Loading), Moscow: MGU, 1965.

    Google Scholar 

  29. Muneer, M., Prakash, R.V., and Balasubramaniam, K., Tensile Deformation Studies in Glass/Epoxy Composite Specimen Using Infrared Thermography, Int. J. Aerospace Innovations, 2010, vol. 2, no. 1, pp. 13–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Sheinin.

Additional information

Original Russian Text © V.I. Sheinin, D.I. Blokhin, I.B. Maksimovich, E.P. Sarana, 2016, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2016, No. 6, pp. 15–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheinin, V.I., Blokhin, D.I., Maksimovich, I.B. et al. Experimental research into thermomechanical effects at linear and nonlinear deformation stages in rock salt specimens under cyclic loading. J Min Sci 52, 1039–1046 (2016). https://doi.org/10.1134/S1062739116061575

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739116061575

Keywords

Navigation