Skip to main content
Log in

Analysis of the sequences of internal transcribed spacers ITS1, ITS2 and the 5.8S ribosomal gene of species of the Amaranthus genus

  • Short Communications
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Analysis of the sequence ITS1-5.8S-ITS2 in 11 samples of the amaranth species (Amaranthus caudatus, A. cruentus, A. hybridus, A. tricolor, A. paniculatus, A. hypohondriacus) was performed. It has been shown that the variability of the sequences of the intergenic spacers ITS1, ITS2 and 5.8S rRNA gene of the amaranth species analyzed is extremely low. A possible secondary structure of the 5.8S rRNA molecule was determined for the first time; three conservative motifs were identified. A single nucleotide substitution found in A. hybridus did not change the loop topology. In the sample of Celosia cristata taken as an external group, a four-nucleotide insertion in the 5′-end of the gene and a one-nucleotide deletion in the fourth hairpin not affecting the general topology of the 5.8S rRNA molecule were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adewale, A. and Olorunju, A.E., Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite, Pharm. Res., 2013, vol. 5, no. 4, pp. 300–305.

    Article  CAS  Google Scholar 

  • Alvarez, I.A., Ribosomal its sequences, plant phylogenetic inference, Molec. Phyl. Evol., 2003, vol. 29, no. 3, pp. 417–434.

    Article  CAS  Google Scholar 

  • Baldwin, B.G., Sanderson, M.J., Porter, J.M., et al., The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny, Ann. Mo. Bot. Gard., 1995, vol. 82, pp. 247–277.

    Article  Google Scholar 

  • Baskar, A.A., Al Numair, K.S., Alsaif, M.A., and Ignacimuthu, S., In vitro antioxidant and antiproliferative potential of medicinal plants used in traditional Indian medicine to treat cancer, Redox Rep., 2012, vol. 17, no. 4, pp. 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Costea, M., Brenner, D.M., Tardif, F.J., and Tan, Y.F., Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification, Sun Genet. Res. Crop Evol., 2006, vol. 53, pp. 1625–1633.

    Article  Google Scholar 

  • Harpke, D. and Peterson, A., 5.8S motifs for the identification of pseudogenic ITS regions, Botany, 2008, vol. 86, no. 3, pp. 300–305.

    Article  CAS  Google Scholar 

  • Hricová, A., Kečkešová, M., Gálová, Z., et al., Skú manie zmien profilu bielkovin v semenách láskavca podrobeny-ch radia nej mutagenéze, Chem. Listy, 2011, vol. 105, pp. 542–545.

    Google Scholar 

  • Jain, S.K. and Hauptli, H., Grain amaranth: a new crop for California, Agronomy Prog. Rept., 1980, vol. 107, p. 3.

    Google Scholar 

  • Lanoue, K.Z., Wolf, P.G., Browning, S., and Hood, E.E., Phylogenetic analysis of restriction-site variation in wild and cultivated Amaranthus species (Amaranthaceae), Theor. Appl. Gen., 1996, vol. 93, pp. 722–732.

    Article  CAS  Google Scholar 

  • Limanskiĭ, S.V., Estimation of the genetic variability of amaranth collection (Amaranthus L.) with RAPD-analysis, Cytol. Genet., 2012, vol. 46, no. 4, pp. 19–26.

    Google Scholar 

  • Liston, A., Robinson, W.A., Oliphant, J.M., and Alvarez-Buylla, E.R., Length variation in the nuclear ribosomal internal transcribed spacer region of non-owering seed plants, Syst. Bot., 1996, vol. 21, pp. 109–120.

    Article  Google Scholar 

  • Mlakar, G.S., Turinek, M., Jakop, M., et al., Grain amaranth as an alternative and perspective crop in temperate climate, J. Geogr., 2010, vol. 5, pp. 135–145.

    Google Scholar 

  • Mosyakin, S.L. and Robertson, K.R., New infrageneric taxa and combination in Amaranthus (Amaranthaceae), Ann. Bot. Fenn., 1996, vol. 33, pp. 275–281.

    Google Scholar 

  • Müller, K. and Borsch, T., Phylogenetics of Amaranthaceae using matK/trnK sequence data—evidence from parsimony, likelihood and Bayesian approaches, Ann. Miss. Bot. Gard., 2005, vol. 92, pp. 66–102.

    Google Scholar 

  • Nosov, N.N. and Rodionov, A.V., Molecular phylogenetic study of the relationship between members of the genus Poa (Poaceae), Bot. Zh., 2008, vol. 93, no. 12, pp. 1919–1936.

    Google Scholar 

  • Sauer, J.D., The grain amaranths: a survey of their history and classification, Ann. Miss. Bot. Gard., 1950, vol. 37, pp. 561–619.

    Article  Google Scholar 

  • Slugina, M.A., Snigir’, E.A., Ryzhova, N.N., and Kochieva, E.Z., Structure and polymorphism of a fragment of the pain-1 vacuolar invertase locus in Solanum species, Mol. Biol. (Moscow), 2013, vol. 47, no. 2, pp. 215–221.

    Article  CAS  Google Scholar 

  • Trucco, F., Tatum, T., Rayburn, A.L., and Tranel, P.J., Out of the swamp: unidirectional hybridization with weedy species may explain the prevalence of Amaranthus tuberculatus as a weed, New Phytol., 2009, vol. 184, no. 4, pp. 819–827.

    Article  PubMed  Google Scholar 

  • White, T.J., Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics PCR Protocols: A Guide to Methods and Applications, San Diego: Acad. Press, 1990, pp. 315–322.

    Google Scholar 

  • Won, H. and Renner, S.S., The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum, Mol. Phyl. Evol., 2005, vol. 36, pp. 581–597.

    Article  CAS  Google Scholar 

  • Xiao, L., Möller, M., and Zhu, H., High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: incomplete concerted evolution and the origin of pseudogenes, Mol. Phyl. Evol., 2010, vol. 55, pp. 168–177.

    Article  CAS  Google Scholar 

  • Xu, F. and Sun, M., Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers, Mol. Phyl. Evol., 2001, vol. 21, no. 3, pp. 372–387.

    Article  CAS  Google Scholar 

  • Yudina, R.S., Ibragimova, S.S., and Zheleznova, N.B., Study of the population structure of amaranth (Amaranthus L.) by isozyme loci, Vestn. VOGiS, 2008, vol. 12, no. 3, pp. 385–391.

    Google Scholar 

  • Zheng, X.Y., Cai, D.Y., Yao, L.H., and Teng, Y.W., Nonconcerted its evolution, early origin and phylogenetic utility of its pseudogenes in Pyrus, Mol. Phyl. Evol., 2008, vol. 48, pp. 892–903.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Slugina.

Additional information

Original Russian Text © M.A. Slugina, K. Torres Minho, M.A. Filyushin, 2014, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2014, No. 6, pp. 631–635.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slugina, M.A., Torres Minho, K. & Filyushin, M.A. Analysis of the sequences of internal transcribed spacers ITS1, ITS2 and the 5.8S ribosomal gene of species of the Amaranthus genus. Biol Bull Russ Acad Sci 41, 554–558 (2014). https://doi.org/10.1134/S1062359014060119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359014060119

Keywords

Navigation