Skip to main content

Advertisement

Log in

Staged Growth of Optimized Arterial Model Trees

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is a marked difference in the structure of the arterial tree between epi- and endocardial layers of the human heart. To model these structural variations, we developed an extension to the computational method of constrained constructive optimization (CCO). Within the framework of CCO, a model tree is represented as a dichotomously branching network of straight cylindrical tubes, with flow conditions governed by Poiseuille's law. The tree is grown by successively adding new terminal segments from randomly selected points within the perfusion volume while optimizing the geometric location and topological site of each new connection with respect to minimum intravascular volume. The proposed method of “staged growth” guides the generation of new terminal sites by means of an additional time-dependent boundary condition, thereby inducing a sequence of domains of vascular growth within the given perfusion volume. Model trees generated in this way are very similar to reality in their visual appearance and predict diameter ratios of parent and daughter segments, the distribution of symmetry, the transmural distribution of flow, the volume of large arteries, as well as the ratio of small arterial volume in subendocardial and subepicardial layers in good agreement with experimental data. From this study we conclude that the method of CCO combined with staged growth reproduces many characteristics of the different arterial branching patterns in the subendocardium and the subepicardium, which could not be obtained by applying the principle of minimum volume alone. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv, 8719Hh, 4760+i

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arts, T., R. T. I. Kruger, W. VanGerven, J. A. C. Lambregts, and R. S. Reneman. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am. J. Physiol. 237:H469-H474, 1979.

    Google Scholar 

  2. Austin, Jr., R. E., N. G. Smedira, T. M. Squiers, and J. I. E. Hoffman. Influence of cardiac contraction and coronary va-somotor tone on regional myocardial blood flow. Am. J.Physiol. 266:H2542-H2553, 1994.

    Google Scholar 

  3. Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989.

    Google Scholar 

  4. Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. 256:H383-H390, 1989.

    Google Scholar 

  5. Chilian, W. M. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ. Res. 69:561–570, 1991.

    Google Scholar 

  6. Fulton, W. F. M. Morphology of the myocardial microcircu-lation. In: Microcirculation of the Heart, edited by H. Tillmanns, W. Kübler, and H. Zebe. Berlin: Springer, 1982, pp. 15–25.

    Google Scholar 

  7. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer, 1990, pp. 155–195.

    Google Scholar 

  8. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993, pp. 66–108.

    Google Scholar 

  9. Griffith, T. M. and D. H. Edwards. Basal EDRF activity helps to keep the geometrical configuration of arterial bifur-cations close to the Murray optimum. J. Theor. Biol. 146:545–573, 1990.

    Google Scholar 

  10. Hoffman, J. I. E. and J. A. E. Spaan. Pressure-flow relations in coronary circulation. Physiol. Rev. 70:331–390, 1990.

    Google Scholar 

  11. Hudlicka, O., M. Brown, and S. Egginton. Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72:369–417, 1992.

    Google Scholar 

  12. James, T. N. Anatomy and pathology of small coronary ar-teries. In: Coronary Circulation: From Basic Mechanisms to Clinical Implications, edited by J. A. E. Spaan, A. V. G. Bruschke, and A. C. Gittenberger-DeGroot. Dordrecht: Mar-tinus Nijhoff, 1987, pp. 13–23.

    Google Scholar 

  13. Kalos, M. H., and P. A. Whitlock. Monte Carlo Methods. New York: Wiley, 1986, Vol. 1, pp. 40–48.

    Google Scholar 

  14. Kamiya, A. and T. Togawa. Optimal branching structure of the vascular tree. Bull. Math. Biophys. 34:431–438, 1972.

    Google Scholar 

  15. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. A three-dimensional model for arterial tree representation, gen-erated by constrained constructive optimization. Comput. Biol. Med. 29:19–38, 1999.

    Google Scholar 

  16. Kassab, G. S., C. A. Rider, N. J. Tang, and Y.-C. B. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350-H365, 1993.

    Google Scholar 

  17. Kassab, G. S. and Y. C. B. Fung. The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann. Biomed. Eng. 23:13–20, 1995.

    Google Scholar 

  18. Kassab, G. S., J. Berkley, and Y. C. B. Fung. Analysis of pig's coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25:204–217, 1997.

    Google Scholar 

  19. King, R. B., L. J. Weissman, and J. B. Bassingthwaighte. Fractal descriptions for spatial statistics. Ann. Biomed. Eng. 18:111–121, 1990.

    Google Scholar 

  20. LaBarbera, M. Principles of design of fluid transport systems in zoology. Science 249:992–999, 1990.

    Google Scholar 

  21. Lipowsky, H. H. and B. W. Zweifach. Methods for the si-multaneous measurement of pressure differentials and flows in single unbranched vessels of the microcirculation for rheo-logical studies. Microvasc. Res. 14:345–361, 1977.

    Google Scholar 

  22. Lipowsky, H. H., S. Usami, and S. Chien. In vivo measure-ments of the apparent viscosity and microvessel hematocrit in the mesentery of the cat. Microvasc. Res. 19:297–319, 1980.

    Google Scholar 

  23. Mayrovitz, H. N. and J. Roy. Microvascular blood flow: Evidence indicating a cubic dependence on arteriolar diam-eter. Am. J. Physiol. 245:H1031-H1038, 1983.

    Google Scholar 

  24. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. US 12:207–214, 1926.

    Google Scholar 

  25. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835–841, 1926.

    Google Scholar 

  26. Neumann, F., M. Neumann, R. Karch, and W. Schreiner. Visualization of computer-generated arterial model trees. In: Simulation Modelling in Bioengineering, edited by M. Cer-rolaza, D. Jugo, and C. A. Brebbia. Southampton, U.K.: Computational Mechanics, 1996, pp. 259–268.

    Google Scholar 

  27. Neumann, F., W. Schreiner, and M. Neumann. Computer simulation of coronary arterial trees. Adv. Eng. Software 28:353–357, 1997.

    Google Scholar 

  28. Papoulis, A. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1981, pp. 279–332.

    Google Scholar 

  29. Pries, A. R., T. W. Secomb, T. Geáner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–915, 1994.

    Google Scholar 

  30. Rosen, R. Optimality Principles in Biology. London: Butter-worth, 1967, pp. 40–60.

    Google Scholar 

  31. Schreiner, W. Computer generation of complex arterial tree models. J. Biomed. Eng. 15:148–149, 1993.

    Google Scholar 

  32. Schreiner, W., and P. Buxbaum. Computer-optimization of vascular trees. IEEE Trans. Biomed. Eng. 40:482–491, 1993.

    Google Scholar 

  33. Schreiner, W., M. Neumann, F. Neumann, S. M. Roedler, A. End, P. Buxbaum, M. R. Müller, and P. Spieckermann. The branching angles in computer-generated optimized models of arterial trees. J. Gen. Physiol. 103:975–989, 1994.

    Google Scholar 

  34. Schreiner, W., F. Neumann, M. Neumann, A. End, S. M. Roedler, and S. Aharinejad. The influence of optimization target selection on the structure of arterial tree models gen-erated by constrained constructive optimization. J. Gen. Physiol. 106:583–599, 1995.

    Google Scholar 

  35. Schreiner, W., F. Neumann, M. Neumann, A. End, and M. R. Müller. Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization. J. Theor. Biol. 180:161–174, 1996.

    Google Scholar 

  36. Schreiner, W., F. Neumann, M. Neumann, A. End, and S. M. Roedler. Anatomical variability and functional ability of vas-cular trees modeled by constrained constructive optimization. J. Theor. Biol. 187:147–158, 1997.

    Google Scholar 

  37. Schreiner, W., F. Neumann, R. Karch, M. Neumann, S. M. Roedler, and A. End. Shear stress distribution in arterial tree models, generated by constrained constructive optimization. J. Theor. Biol. 198:27–45, 1999.

    Google Scholar 

  38. Sherman, T. F. On connecting large vessels to small: The meaning of Murray's law. J. Gen. Physiol. 78:431–453, 1981.

    Google Scholar 

  39. Spaan, J. A. E. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56:293–309, 1985.

    Google Scholar 

  40. Spaan, J. A. E. Coronary Blood Flow: Mechanics, Distribu-tion, and Control. Dordrecht: Kluwer Academic, 1991, pp. 37–67.

    Google Scholar 

  41. Suwa, N., T. Niwa, H. Fukasawa, and Y. Sasaki. Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. Tohoku J. Exp. Med. 79:168–198, 1963.

    Google Scholar 

  42. Uylings, H. B. M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull. Math. Biol. 39:509–520, 1977.

    Google Scholar 

  43. VanBavel, E. and J. A. E. Spaan. Branching patterns in the porcine coronary arterial tree: Estimation of flow heterogene-ity. Circ. Res. 71:1200–1212, 1992.

    Google Scholar 

  44. Van Beek, J. H. G. M., S. A. Roger, and J. B. Bassingth-waighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257:H1670-H1680, 1989.

    Google Scholar 

  45. West, G. B., J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science 276:122–126, 1997.

    Google Scholar 

  46. Woldenberg, M. J. and K. Horsfield. Relation of branching angles to optimality for four cost principles. J. Theor. Biol. 122:187–204, 1986.

    Google Scholar 

  47. Wüsten, B., D. D. Buss, H. Deist, and W. Schaper. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res. Cardiol. 72:636–650, 1977.

    Google Scholar 

  48. Zamir, M. Optimality principles in arterial branching. J. Theor. Biol. 62:227–251, 1976.

    Google Scholar 

  49. Zamir, M. The role of shear forces in arterial branching. J. Gen. Physiol. 67:213–222, 1976.

    Google Scholar 

  50. Zamir, M. Shear forces and blood vessel radii in the cardio-vascular system. J. Gen. Physiol. 69:449–461, 1977.

    Google Scholar 

  51. Zamir, M., J. A. Medeiros, and T. K. Cunningham. Arterial bifurcations in the human retina. J. Gen. Physiol. 74:537–548, 1979.

    Google Scholar 

  52. Zamir, M. and H. Chee. Branching characteristics of human coronary arteries. Can. J. Physiol. Pharmacol. 64:661–668, 1986.

    Google Scholar 

  53. Zamir, M. and H. Chee. Segment analysis of human coronary arteries. Blood Vessels 24:76–84, 1987.

    Google Scholar 

  54. Zamir, M. Distributing and delivering vessels of the human heart. J. Gen. Physiol. 91:725–735, 1988.

    Google Scholar 

  55. Zamir, M. Flow strategy and functional design of the coro-nary network. In: Coronary Circulation: Basic Mechanisms and Clinical Relevance, edited by F. Kajiya, G. A. Klassen, J. A. E. Spaan, and J. I. E. Hoffman. Tokyo: Springer, 1990, pp. 15–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karch, R., Neumann, F., Neumann, M. et al. Staged Growth of Optimized Arterial Model Trees. Annals of Biomedical Engineering 28, 495–511 (2000). https://doi.org/10.1114/1.290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.290

Navigation