Skip to main content
Log in

Cospeciation of ants and plants

  • Original Articles
  • Published:
Ecological Research

Cospeciation, in which both parties of an ecological interaction speciate in parallel with each other, has rarely been reported in biotic associations except the cases for host–parasite interaction. Many tropical plants house ants and thereby gain protection against herbivores. Although these ant–plant symbioses have been regarded as classical cases of coevolved mutualism, no evidence of cospeciation has been documented. The Asian ant–plant association between Crematogaster ants and Macaranga plants is highly species specific and the molecular phylogeny of the ants parallels the plant phylogeny, reflecting history of cospeciation. Evidence is presented that this association has been maintained over the past seven million years. Phylogeographic patterns of 27 ants from two Macaranga species suggest that allopatric cospeciations are still in progress in Asian wet tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ayala F. J., Wetterer J. K., Longino J. T., Hartl D. L. (1996) Molecular phylogeny of Azteca ants (Hymenoptera: Formicidae) and the colonization of Cecropia trees. Molecular Phylogenetics and Evolution 5: 423–428.

    Google Scholar 

  • Brower A. V. Z. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences USA 91: 6491–6495.

    Google Scholar 

  • Chenuil A. & McKey D. B. (1996) Molecular phylogenetic study of a myrmecophyte symbiosis: did Leonardoxa/ant associations diversify via cospeciation? Molecular Phylogenetics and Evolution 6: 270–286.

    Google Scholar 

  • Clary D. O. & Wolstenholme D. R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22: 252–271.

    Google Scholar 

  • Davidson D. W. & Mckey D. (1993a) Ant–plant symbioses: stalking the chuyachaqui. Trends in Ecology and Evolution 8: 326–332.

    Google Scholar 

  • Davidson D. W. & Mckey D. (1993b) The evolutionary ecology of symbiotic ant–plant relationships. Journal of Hymenoptera Research 2: 13–83.

    Google Scholar 

  • Davies S. J., Lum S. K. Y., Chan R. K. G., Wang L. K. (2001) Evolution of myrmecophytism in Macaranga (Euphorbiaceae). Evolution 55: 1542–1559.

    Google Scholar 

  • Davies S. J., Palmiotto P., Ashton P. S., Lee H. S., Lafrankie J. V. (1998) Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. Journal of Ecology 86: 662–673.

    Google Scholar 

  • Farrell B. D. & Mitter C. (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel? Evolution 44: 1389–1403.

    Google Scholar 

  • Fiala B., Jakob A., Maschwitz U., Linsenmair K. (1999) Diversity, evolutionary specialization and geographic distribution of a mutualistic ant-plant complex: Macaranga and Crematogaster in South East Asia. Biological Journal of the Linnean Society 66: 305–331.

    Google Scholar 

  • Fiala B. & Maschwitz U. (1990) Studies on the South East Asian ant–plant association Crematogaster borneensis/Macaranga: adaptations of the ant partner. Insectes Sociaux 37: 212–231.

    Google Scholar 

  • Fiala B., Maschwitz U., Tho Y. P., Helbig A. J. (1989) Studies of a South East Asian ant–plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79: 463–470.

    Google Scholar 

  • Fonseca C. R. & Ganade G. (1996) Asymmetries, compartments and null interactions in an Amazonian ant-plant community. Journal of Animal Ecology 65: 339–347.

    Google Scholar 

  • Hafner M. S., Sudman P. D., Villablanca F. X., Spradling T. A., Demastes J. W., Nadler S. A. (1994) Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265: 1087–1090.

    Google Scholar 

  • Hasegawa M., Kishino H., Yano T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.

    Google Scholar 

  • Herre E. A., Machado C. A., Bermingham E., Nason J. D., Wndsor D. M., McCafferty S. S., Van Houten W., Bachmann K. (1996) Molecular phylogenies of figs and their pollinator wasps. Journal of Biogeography 23: 521–530.

    Google Scholar 

  • Itino T. & Itioka T. (2001) Interspecific variation and ontogenetic change in anti-herbivore defense in myrmecophytic Macaranga species. Ecological Research 16: 765–774.

    Google Scholar 

  • Itino T., Itioka T., Hatada A., Hamid A. A. (2001) Effects of food rewards offered by ant-plant Macaranga on the colony size of ants. Ecological Research 16: 775–786.

    Google Scholar 

  • Itioka T., Nomura M., Inui Y., Itino T., Inoue T. (2000) Difference in intensity of ant defense among three species of Macaranga myrmecophytes in a Southeast Asian dipterocarp forest. Biotropica 32: 318–326.

    Google Scholar 

  • Janzen D. H. (1966) Coevolution of mutualism between ants and acacias in central America. Evolution 20: 248–275.

    Google Scholar 

  • Maschwitz U., Fiala B., Davies S. J., Linsenmair K. E. (1996) A South-east Asian myrmecophyte with two alternative inhabitants: Camponotus or Crematogaster as partners of Macaranga lamellata. Ecotropica 2: 29–40.

    Google Scholar 

  • Mitter C., Farrell B., Futuyma D. J. (1991) Phylogenetic studies of insect–plant interactions: insight into the genesis of diversity. Trends in Ecology and Evolution 6: 290–293.

    Google Scholar 

  • Morley R. J. (1998) Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In: Biogeography and Geological Evolution of SE Asia. (ed. R. Hall & J. D. Holloway) pp. 177–200. Backhuys Publishers, Amsterdam.

    Google Scholar 

  • Page R. D. M. (1993) Component. The Natural History Museum, London.

    Google Scholar 

  • Page R. D. M., Lee P. L. M., Becher S. A., Griffiths R., Clayton D. H. (1998) A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol. Phyl. Evol. 9: 276–293.

    Google Scholar 

  • Schupp E. W. (1986) Azteca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia 70: 379–385.

    Google Scholar 

  • Swofford D. L. (1998) Paup*, Version 4.0. Sinauer Associates, Sunderland.

    Google Scholar 

  • Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucletic Acids Research 22: 4673–4680.

    Google Scholar 

  • Treseder K. K., Davidson D. W., Ehleringer J. R. (1995) Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375: 137–139.

    Google Scholar 

  • Ward P. S. (1991) Phylogenetic analysis of pseudomyrmecine ants associated with domatia-bearing plants. In: Ant–Plant Interactions. (eds C. R. Huxley & D. F. Cutler) pp. 335–352. Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Itino.

About this article

Cite this article

Itino, T., Davies, S., Tada, H. et al. Cospeciation of ants and plants. Ecol Res 16, 787–793 (2001). https://doi.org/10.1046/j.1440-1703.2001.00442.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2001.00442.x

Key words

Navigation