Skip to main content
Log in

The Simplest Axiom System for Plane Hyperbolic Geometry

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We provide a quantifier-free axiom system for plane hyperbolic geometry in a language containing only absolute geometrically meaningful ternary operations (in the sense that they have the same interpretation in Euclidean geometry as well). Each axiom contains at most 4 variables. It is known that there is no axiom system for plane hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one obtains an axiom system for plane Euclidean geometry, expressed in the same language, all of whose axioms are also at most 4-variable universal sentences. We also provide an axiom system for plane hyperbolic geometry in Tarski's language L B which might be the simplest possible one in that language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, F., Aufbau der Geometrie aus dem Spiegelungsbegriff, 2. Auflage. Springer-Verlag, Berlin, 1973.

    Google Scholar 

  2. Diller, J., 'Eine algebraische Beschreibung der metrischen Ebenen mit ineinander beweglichen Geraden', Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 34 (1970), 184–202.

    Google Scholar 

  3. Doraczyńska, E., 'On constructing a field in hyperbolic geometry', Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 25 (1977), 1109–1114.

    Google Scholar 

  4. Engeler, E., Metamathematik der Elementarmathematik, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  5. Forder, H. G., 'On the axioms of congruence in semi-quadratic geometry', Journal of the London Mathematical Society 22 (1947), 268–275.

    Google Scholar 

  6. Gerretsen, J. C. H., 'Die Begründung der Trigonometrie in der hyperbolischen Ebene, I, II, III', Nederlandse Akademie van Wetenschappen Proceedings 45 (1942), 360–366, 479–483, 559–566.

    Google Scholar 

  7. Gerretsen, J. C. H., 'Zur hyperbolischen Geometrie', Nederlandse Akademie van Wetenschappen Proceedings 45 (1942), 567–573.

    Google Scholar 

  8. Greenberg, M. J., 'Aristotle's axiom in the foundations of geometry', Journal of Geometry 33 (1988), 53–57.

    Google Scholar 

  9. Gupta, H. N., Contributions to the axiomatic foundations of Euclidean geometry, Ph. D. Thesis, University of California, Berkeley, 1965.

    Google Scholar 

  10. Hartshorne R., Geometry: Euclid and Beyond, Springer-Verlag, New York 2000.

    Google Scholar 

  11. Hilbert, D., 'Neue Begründung der Bolyai-Lobatschefskyschen Geometrie', Mathematische Annalen 57 (1903), 137–150; also: Anhang III of Grundlagen der Geometrie, 12. Auflage, B. G. Teubner, Stuttgart, 1977.

    Google Scholar 

  12. Hjelmslev, J, 'Neue Begründung der ebenen Geometrie', Mathematische Annalen 64 (1907), 449–474.

    Google Scholar 

  13. Hodges, W., Model theory, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  14. Krynicki, M. and Szczerba, L., 'On simplicity of formulas', Studia Logica 49 (1990), 401–419.

    Google Scholar 

  15. Moler, N. and Suppes, N., 'Quantifier-free axioms for constructive plane geometry', Compositio Mathematica 20 (1968), 143–152.

    Google Scholar 

  16. Pambuccian, V., 'Simplicity' Notre Dame Journal of Formal Logic 29 (1988), 396–411.

    Google Scholar 

  17. Pambuccian, V., 'Simple axiom systems for Euclidean geometry', Mathematical Chronicle 18 (1989), 63–74.

    Google Scholar 

  18. Pambuccian, V., The axiomatics of Euclidean geometry, Ph. D. Thesis, University of Michigan, Ann Arbor, 1993.

    Google Scholar 

  19. Pambuccian, V., 'Ternary operations as primitive notions for constructive plane geometry V', Mathematical Logic Quarterly 40 (1994), 455–477.

    Google Scholar 

  20. Pambuccian, V., 'Ternary operations as primitive notions for constructive plane geometry VI', Mathematical Logic Quarterly 41 (1995), 384–394.

    Google Scholar 

  21. Pambuccian, V., 'On the simplicity of an axiom system for plane Euclidean geometry', Demonstratio Mathematica 30 (1997), 509–512.

    Google Scholar 

  22. Pambuccian, V., 'Corrections to “Ternary operations as primitive notions for constructive plane geometry III, V, VI', Mathematical Logic Quarterly, 47 (2001), 136.

    Google Scholar 

  23. Pambuccian, V., 'Constructive axiomatization of plane absolute, Euclidean and hyperbolic geometry', Mathematical Logic Quarterly 47 (2001), 129–135.

    Google Scholar 

  24. Pambuccian, V., 'Constructive axiomatization of plane hyperbolic geometry', Mathematical Logic Quarterly 47 (2001), 475–488.

    Google Scholar 

  25. Pambuccian, V., 'Fragments of Euclidean and hyperbolic geometry', Scientiae Mathematicae Japonicae 53 (2001), 361–400.

    Google Scholar 

  26. Pambuccian, V., 'Hyperbolic geometry in terms of point-reflections or of line-orthogonality', Mathematica Pannonica, to appear.

  27. Pejas, W., 'Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie', Mathematische Annalen 143 (1961), 212–235.

    Google Scholar 

  28. Rigby, J. F., 'Axioms for absolute geometry', Canadian Journal of Mathematics 20 (1968), 158–181.

    Google Scholar 

  29. Rigby, J. F., 'Congruence axioms for absolute geometry', Mathematical Chronicle 4 (1975), 13–44.

    Google Scholar 

  30. Schwabhäuser, W., Szmielew, W., and Tarski, A., Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  31. Scott, D., 'Dimension in elementary Euclidean geometry', in L. Henkin, P. Suppes and A. Tarski, (eds.), The axiomatic method with special reference to geometry and physics, pp. 53–67, North-Holland, Amsterdam, 1959.

    Google Scholar 

  32. Sörensen, K., 'Ebenen mit Kongruenz', Journal of Geometry 22 (1984), 15–30.

    Google Scholar 

  33. Szász, P., 'Einfache Herstellung der hyperbolischen Trigonometrie in der Ebene auf Grund der Hilbertschen Endenrechnung', Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica 5 (1962), 79–85.

    Google Scholar 

  34. Szász, P., 'Unmittelbare Einführung Weierstrassscher homogenen Koordinaten in der hyperbolischen Ebene auf Grund der Hilbertschen Endenrechnung', Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), 1–28.

    Google Scholar 

  35. Szász, P., 'On axioms of congruence due to H. G. Forder', Monatshefte für Mathematik 65 (1961), 270–276.

    Google Scholar 

  36. Szmielew, W., 'A new analytic approach to hyperbolic geometry', Fundamenta Mathematicae 50 (1961/1962), 129–158.

    Google Scholar 

  37. Szmielew, W., 'The Pasch axiom as a consequence of the circle axiom', Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 18 (1970), 751–758.

    Google Scholar 

  38. Szmielew, W., From affine to Euclidean geometry. An axiomatic approach, D. Reidel, Dordrecht; PWN, Warsaw, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pambuccian, V. The Simplest Axiom System for Plane Hyperbolic Geometry. Studia Logica 77, 385–411 (2004). https://doi.org/10.1023/B:STUD.0000039031.11852.66

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUD.0000039031.11852.66

Navigation